
Climate Dynamics (Summer Semester 2017)
J. Mülmenstädt

Today’s Lecture (Lecture 13): Uncertainties due to clouds and aerosols

Reference
IPCC AR5, Chs. 7 and 9



5.3 – Clouds and aerosols

Why discuss clouds aerosols and clouds
together?

I Anthropogenic activity affects clouds through aerosols
and GHG (both through the surface temperature and
through rapid adjustments)

I Past: strong aerosol forcing (relative to GHG);
inter-model spread dominated by differences in aerosol

I Future: weak aerosol forcing (relative to GHG);
inter-model spread dominated by feedbacks, mainly
cloud

I Inability to constrain climate sensitivity from historical
observations if the aerosol ERF is poorly constrained

I Clouds and aerosols each pose two distinct challenges:
1. Fundamental understanding of processes
2. Their representation in large-scale models

Figure: Andreae et al. (2005)



Challenges related to clouds
Representation of clouds in climate
models
Parameterized subgridscale processes:

I Turbulence
I Cumulus convection
I Microphysical processes
I Radiative transfer
I Cloud amount (including the vertical

overlap between different grid levels)
I Subgridscale transport of aerosol and

chemical species

Figures: IPCC AR5 unless noted

Many cloud processes are unrealistic in current GCMs→ cloud response to climate
change remains uncertain

CRE is large compared to
feedbacks (and forcings)

I LW and SW CRE:
O(10) W m−2

I Forcings: O(1) W m−2

I Feedbacks: O(1) W m−2 K−1

Need for models to evaluate
feedbacks

I Observable climate variations
are not necessarily good analogs
for GHG climate change

I Change in TOA flux due to
clouds is difficult to isolate



Feedbacks: water vapor + lapse rate

Compensation in intermodel spread of water
vapor and lapse rate feedback

I Saturation water vapor pressure as a function of surface
temperature: 7% K−1 near the surface, up to 17% K−1

in the upper troposphere
I Increase with height because of the lapse rate feedback
I Models with strong lapse rate feedbacks will have high

increase in upper tropospheric water vapor, and
therefore a strong water vapor feedback

I Combined lapse rate + water vapor feedback is well
constrained; +0.96 to +1.22 W m−2 K−1



Feedbacks: clouds

Cloud feedbacks:
I Changes in high-level cloud altitude and amount
I Effects of hydrological cycle and storm track changes

on cloud systems
I Changes in low-level cloud amount
I Microphysically induced opacity (optical depth)

changes
I Changes in high-latitude clouds

Some changes occur at the GCM resolved scale, but most
involve subgrid-scale processes that need to be
parameterized



Cloud feedbacks: high-cloud altitude

I Ascent in tropical deep convection is mass-balanced by
compensating subsidence

I Compensating subsidence is due to equilibrium
between radiative cooling and adiabatic compression

I The subsidence top occurs at the altitude where the
water vapor mixing ratio decreases rapidly (≈ 220 K);
the convection top will occur at the same altitude

I In a warming climate, the water vapor mixing ratio still
has the same temperature dependence, so that the
radiative cooling still become inefficient at ≈ 220 K

I The clear-sky emission temperature will increase due to
atmospheric warming, but the cloud emission
temperature will not, so that the LW CRE becomes
stronger

I Expect +0.5 W m−2 K−1 (in the tropics); model range
is +0.09 to +0.58 W m−2 K−1

Figure: Hartmann and Larson (2002); argument: Zelinka and Hartmann (2010)



Cloud feedbacks: circulation changes



Boundary layer – the cloud-process view

Vertical structure
Boundary layer is well mixed and capped by a . . .

Cloud layer which maintains a temperature
inversion by cloud-top cooling and
is weakly coupled to the . . .

Free troposphere by an entrainment layer

Processes
Sensible and latent heat flux at the surface and . . .

Radiative cooling at cloud top destabilize the airmass;
this results in . . .

Convection which mixes the layer vertically and
horizontally

Figure: Wood 2012



Cloud feedbacks: low cloud
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Figure: Bretherton (2015)



Cloud feedbacks: low cloud

Low clouds, especially in the tropics and subtropics, are the largest contributors to the intermodel spread in cloud feedback

Negative feedback mechanisms
In a warmer climate, low clouds might be

I horizontally more extensive, because changes in
the lapse rate also modify the lower-tropospheric
stability

I optically thicker, because adiabatic ascent
condenses more liquid

I vertically more extensive in response to
weakening of the tropical overturning circulation

Positive feedback mechanisms
I Warming-induced increase in moisture inversion

strength reduces cloud amount or thickness
I Energetic constraints prevent the surface

evaporation from increasing with warming at a
rate sufficient to balance expected changes in dry
air entrainment, thereby reducing the supply of
moisture to form clouds

I Increased concentrations of GHGs reduce the
radiative cooling that drives stratiform cloud
layers and thereby the cloud amount

It appears that the positive feedbacks, though less intuitive, are more important; in GCMs, the low-cloud feedback ranges
from −0.09 to +0.63 W m−2 K−1 (with approximately 80% probability of positive feedback); high-resolution modeling
supports the mechanisms above



Radiative forcing: aerosol–radiation and aerosol–cloud interactions



Aerosol–cloud and aerosol–radiation interactions: large uncertainties

Category Best Estimate Climate Model and/or Satellite Instrument Reference

with mixed-phase clouds –1.55 CAM Oslo Hoose et al. (2010b)

with mixed-phase clouds –1.02 ECHAM Lohmann and Ferrachat (2010)

with mixed-phase clouds –1.68 GFDL Salzmann et al. (2010)

with mixed-phase clouds –0.81 CAM Oslo Storelvmo et al. (2008b; 2010)

with convective clouds –1.50 ECHAM Lohmann (2008)

with convective clouds –1.38 GISS Koch et al. (2009a)

with convective clouds –1.05 PNNL-MMF Wang et al. (2011b)

Satellite-based –0.85 ECHAM + POLDER Lohmann and Lesins (2002)

Satellite-based –0.93 AVHRR Sekiguchi et al. (2003)

Satellite-based –0.67 CERES / MODIS Lebsock et al. (2008)

Satellite-based –0.45 CERES / MODIS Quaas et al. (2008)

Satellite-based –0.95 Model mean + MODIS Quaas et al. (2009)

Satellite-based –0.85 MACC + MODIS Bellouin et al. (2013)

modelling group is used. For satellite studies the estimates are corrected for the ERFari and for the longwave component of ERFari+aci when these are not included (see text).

AVHRR = Advanced Very High Resolution Radiometer.

CERES = Clouds and the Earth’s Radiant Energy System.

MACC = Monitoring Atmospheric Composition and Climate.

MODIS = Moderate Resolution Imaging Spectrometer. 

POLDER = Polarization and Directionality of the Earth’s Reflectances.

Confounding by meteorology
Aerosol depends on airmass history (origin, precipitation,
humidity, . . . ), but so do clouds

Non-monotonic behavior of the adjustments
Magnitude and even sign of the adjustments depends on
details of small-scale processes

Uncertain preindustrial state
Unlike for WMGHG, we have no reliable estimates of
preindustrial aerosol; biomass burning contributed
anthropogenic aerosol even before the Industrial Revolution


