Today'’s Lecture (Lecture 12): Uncertainties due to clouds and aerosols

Reference
IPCC AR5, Chs. 7 and 9
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Clouds and aerosols

Why discuss clouds aerosols and clouds
together?

>

Anthropogenic activity affects clouds through aerosols
and GHG (both through the surface temperature and
through rapid adjustments)

Past: strong aerosol forcing (relative to GHG);
inter-model spread dominated by differences in aerosol
Future: weak aerosol forcing (relative to GHG);
inter-model spread dominated by feedbacks, mainly
cloud

Inability to constrain climate sensitivity from historical
observations if the aerosol ERF is poorly constrained
Clouds and aerosols each pose two distinct challenges:

1. Fundamental understanding of processes
2. Their representation in large-scale models

Figure: Andreae et al. (2005)
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Challenges related to clouds

W v ganen= 2y Representation of clouds in climate
models
Parameterized subgridscale processes:

> Turbulence

©  Longuave gosaimem =202 W) » Cumulus convection
m . .

> Microphysical processes

» Radiative transfer

» Cloud amount (including the vertical
overlap between different grid levels)

» Subgridscale transport of aerosol and
chemical species

change remains uncertain
Cloud Radiative Effect (W m?)
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oo w0 CRE is large compared to

feedbacks (and forcings)
> W and SW CRE:
O(10) W m~2
» Forcings: O(1) W m—2
» Feedbacks: O(1) Wm—2 K~!
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Figures: IPCC AR5 unless noted

Many cloud processes are unrealistic in current GCMs — cloud response fo climate

Need for models to evaluate

feedbacks

> Observable climate variations
are not good analogs for GHG
climate change

» Change in TOA flux due to
clouds isdifficult to isolate



Feedbacks: water vapor + lapse rate
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Feedbacks: clouds
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Cloud feedbacks:
> Changes in high-level cloud altitude

> Effects of hydrological cycle and storm track changes
on cloud systems

» Changes in low-level cloud amount

> Microphysically induced opacity (optical depth)
changes

» Changes in high-latitude clouds



Cloud feedbacks: high-cloud altitude

VeV < 0”1 200 ——— VeV >0
—1 400
—— 600
—— 800
p | |
, N\
-1.0 05 00 Convective
Clear-Sky Cooling Heating

Figure: Hartmann and Larson (2002); argument: Zelinka and Hartmann (2010)

Ascent in tropical deep convection is mass-balanced by
compensating subsidence

Compensating subsidence is due to equilibrium
between radiative cooling and adiabatic compression

The subsidence top occurs at the altitude where the
water vapor mixing ratio decreases rapidly (=~ 220 K);
the convection top will occur at the same altitude

In @ warming climate, the water vapor mixing ratio still
has the same temperature dependence, so that the
radiative cooling still become inefficient at &~ 220 K

The clear-sky emission temperature will increase due to
atmospheric warming, but the cloud emission
temperature will not, so that the LW CRE becomes
stronger

Expect 0.5 W m=2 K= (in the tropics); model range
is +-0.09 to +0.58 W m—2 K~!



Cloud feedbacks: circulation changes
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Cloud feedbacks: low cloud

Low clouds, especially in the tropics and subtropics, are the largest contributors to the intermodel spread in cloud feedback

Negative feedback mechanisms Positive feedback mechanisms
In a warmer climate, low clouds might be » Warming-induced changes in water vapor mixing
» horizontally more extensive, because changes in ratio lapse rate require a reduction in cloud
the lapse rafe also modify the lowertropospheric amount or thickness
stability > Energetic constraints prevent the surface
> optically thicker, because adiabatic ascent evaporation from increasing with warming at a
releases more latent heat rate sufficient to balance expected changes in dry

air entrainment, thereby reducing the supply of

» vertically more extensive in response to A
moisture to form clouds

weakening of the tropical overturning circulation
> Increased concentrations of GHGs reduce the
radiative cooling that drives stratiform cloud
layers and thereby the cloud amount

It appears that the positive feedbacks, though less intuitive, are more important; in models, the low-cloud feedback ranges
from —0.09 to 4+0.63 W m~2 K~ (with approximately 80% probability of positive feedback)



Irradiance Changes from

Radiative forcing: aerosol-radiation and aerosol—cloud inferactions
Aerosol-Radiation Interactions (ari)

Irradiance Changes from
Aerosol-Cloud Interactions (aci)
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Aerosol-cloud and aerosol-radiation interactions: large uncertainties
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