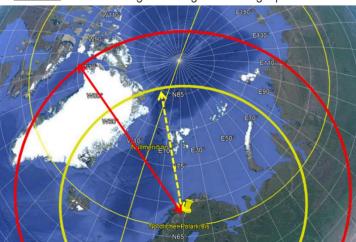


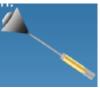
HALO during HALO-(AC)³


André Ehrlich, Susanne Crewell et al.

Kiruna: 5. March – 15. April 2022

max. range 3300 NM (10 km altitude, 400 kn) realistic range including scientific flight pattern

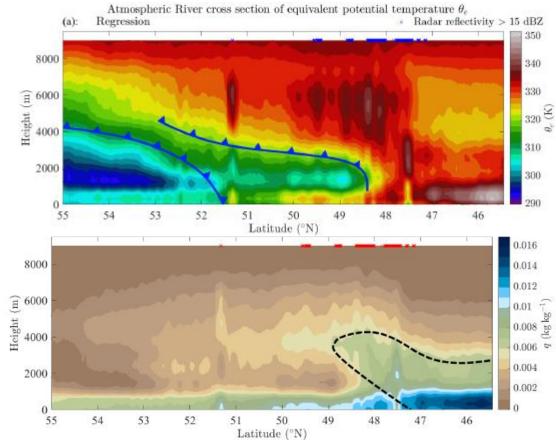
Scientific Payload of HALO-(AC)³


HALO

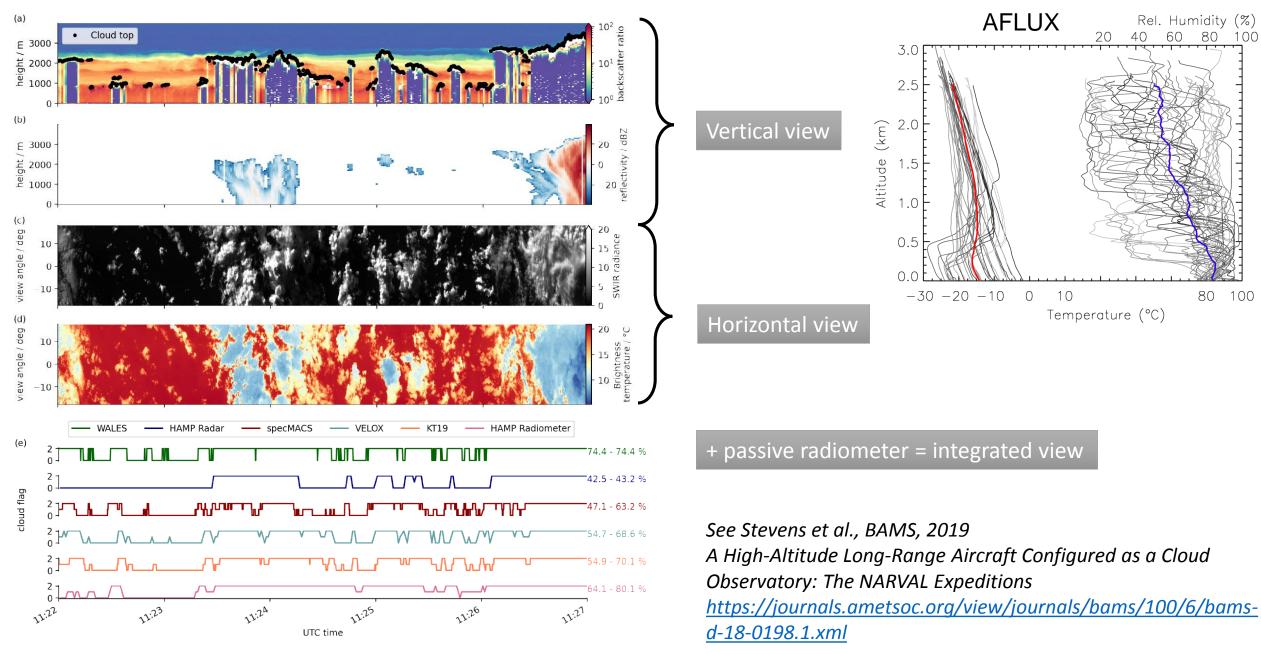
Remote sensing + Dropsonde

Similar remote sensing payload

Scientific Payload of HALO-(AC)³



Names /Acronyms	Technique	Measured/Retrieved Quantities	Institution		
		HALO			
SMART-Albedometer	Passive Solar	Spectral Irradiance (Upward, Downward)	Uni Leipzig		
		Spectral Radiance (Upward, FOV = 2.1°)			
specMACS	Passive Solar	Spectral Radiance (FOV = 34°, 1300 px / 320 px)	Uni München		
WALES	Active Solar (Lidar)	Particle Backscattering Coefficient, Water Vapour Mixing Ratio, Cloud Top Height,	DLR		
HAMP	Passive Microwave	Brightness Temperature	MPI Hamburg, Uni Hamburg, Uni Köln, DLR		
	Active Microwave (Radar)	Radar Reflectivity Factor, Doppler Velocity, Doppler Spectra Width, Depolarization Ratio			
VELOX	Passive Terrestrial	Brightness Temperature (FOV = $44^{\circ} \times 35^{\circ}$, 640 px $\times 512$ px)	Uni Leipzig, MPI Hamburg		
BACARDI	Broadband radiometer	Solar and terrestrial irradiance (Upward, Downward)	DLR, Uni Leipzig		
POLAR 5					
SMART-Albedometer	Passive Solar	Spectral Irradiance (Upward, Downward)	Uni Leipzig		
		Spectral Radiance (Upward, FOV = 2.1°)	1		
Aisa Eagle/Hawk	Passive Solar	Spectral Radiance (FOV = 36°, 1028 px / 348 px)	Uni Leipzig		
180° Fish-Eye Camera	Passive Solar	Spectral Radiance (FOV = $180^{\circ} \times 180^{\circ}$, 3908 px × 2600 px)	AWI/ Uni Leipzig		
AMALi	Active Solar (Lidar)	Particle Backscattering Coefficient, Cloud Top Height, Particle Depolarization	AWI		
MiRAC	Passive Microwave	Brightness Temperature	Uni Köln		
	Active Microwave (Radar)	Radar Reflectivity Factor, Doppler Velocity, Doppler Spectra Width	Uni Köln		
Sun Photometer	Passive Solar (direct Sun)	Spectral Aerosol Optical Depth (AOD)	AWI		
Broadb. Radiometer	Broadband radiometer	Solar and terrestrial irradiance (Upward, Downward)	DLR, Uni Leipzig		
Nose Boom	Five-hole probe	3D wind vector, temperature and humidity, turbulent fluxes	AWI		


- Advanced lidar (**WALES**) with capability to derive water vapor profiles in cloud free regions
- Multi-channel (25) microwave radiometer (HAMP) compared to 7 high frequency channels (Polar 5) enable retrieval of thermodynamic state
- 35 GHz pulsed radar (HAMP) with slightly coarser vertical resolution as compared to FMCW system on (Polar 5) and similar sensitivity
- IR and polarization cameras

NAWDEX 27 Sep 2016, Andreas Walbröl,

Examples of Measurements

HALO = Remote sensing + Dropsonde

→ Only in high altitude: above/below cirrus

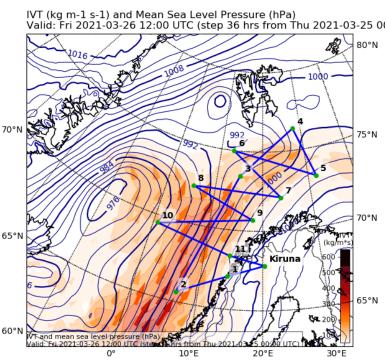
→ Provide a data set for: (A)
 (B)
 (B)
 (C)
 (C)

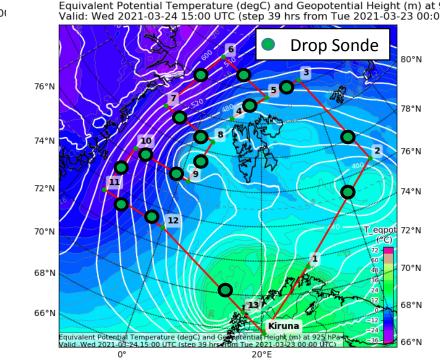
 \rightarrow Data to be expected:

 \rightarrow Data missing = in situ \rightarrow **Polar 5/6** + ATR-42 + FAAM

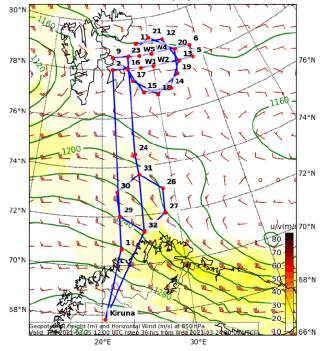
To be discussed during the workshop

Objectives	Details	Instruments	Priority
Lagrangian sampling WAI	along trajectory	all	1
	across trajectory	all	1
Lagrangian sampling CAO	along trajectory	all	2
	across trajectory	all	2
Cirrus remote sensing	below/above cirrus	all	2
Large scale divergence		Drop sondes	1
Atmospheric rivers		all	2
Polar Low		all	3
Surface/Sea ice (cloud free)	cloud-free conditions	solar & IR imager	3



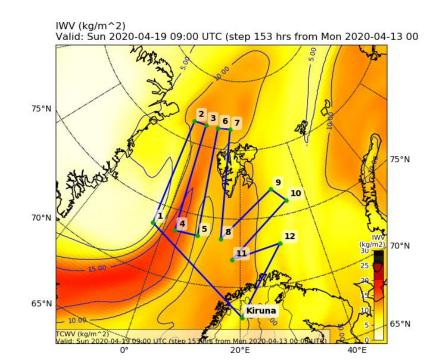


Flight planning:

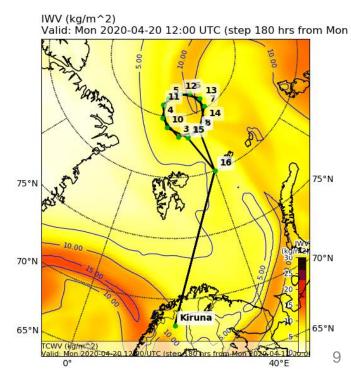

- \rightarrow identification of area of interest (4 day in advance)
- \rightarrow lagrangian perspective
- \rightarrow close collaboration with modelling demands
- \rightarrow search link to Polar 5/6

Sufficient preparation time needed

Geopotential Height (m) and Horizontal Wind (m/s) (Wind Speed 10-85 m/s) at 850.0 (Pa) Valid: Thu 2021-03-25 12:00 UTC (step 36 hrs from Wed 2021-03-24 00:00 UTC)


3 Flights on 3 consecutive days: maximize lagrangian perspective

- intense planning and operational effort ightarrow how to organize our self?
- sampling strategy \rightarrow identify best flight pattern to make flights comparable?!


18. April

19. April

1WV (kg/m^2) Valid: Sat 2020-04-18 15:00 UTC (step 135 hrs from Mon 2020-04-13 00:00 UTC) 70°N 65°N 60°N 60°N

20. April

Other activities

- ISLAS ATR-42 10 March 30 March 2022 (or 1 week later)
- ACAO FAAM 146 07 March 01 April 2022
- MC² INCAS King Air 09 March 01 April 2022

Activities parallel to HALO-(AC)³ - Kiruna

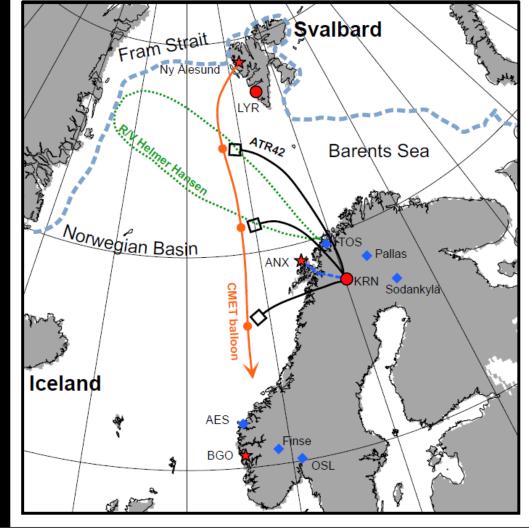
Isotopic Links to Atmospheric Water's Sources Field Campaign 2022

Harald Sodemann

for the ISLAS team (Andrew Seidl, Aina Johannessen, Alena Dekhtyareva, Iris Thurnherr, Marvin Kähnert, Marius Jonassen, Lars R. Hole, Paul Voss, Sander Løklingholm, Lukas Papritz, Marina Dütsch, Patrick Chazette, Julien Delanoë, Alfons Schwarzenboeck)

E European Research

UNIVERSITY OF BERGEN



Plans (and wishes) for the ISLAS2022 campaign:

Lagrangian airmass sampling with water vapour isotope instrumentation

- Isotope meas. onboard ATR42
- Isotope meas. onboard R/V Helmer Hansen
 5 CMET balloons from Ny Ålesund
- 5 CMET balloons from Ny Alest
- Supersite Andenes (ANX)
- Supersite Kiruna supersite
- Surface transect (ANX-KRN-Abisko)
- Special site overflights
- No more COVID restrictions!

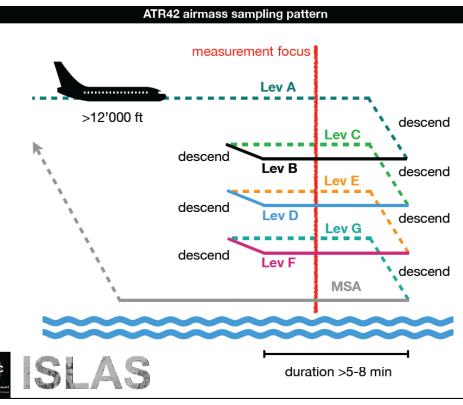
ATR42 at Andenes

- 1. Internal instrumentation
- Picarro isotope rack
- according to specifications in DDI
- heated inlet backward position
- ALIAS looking sideways to the right
- ULICE looking downward (CNRS)
- BASTA looking sideways to the right

2. Microphysics and radiation

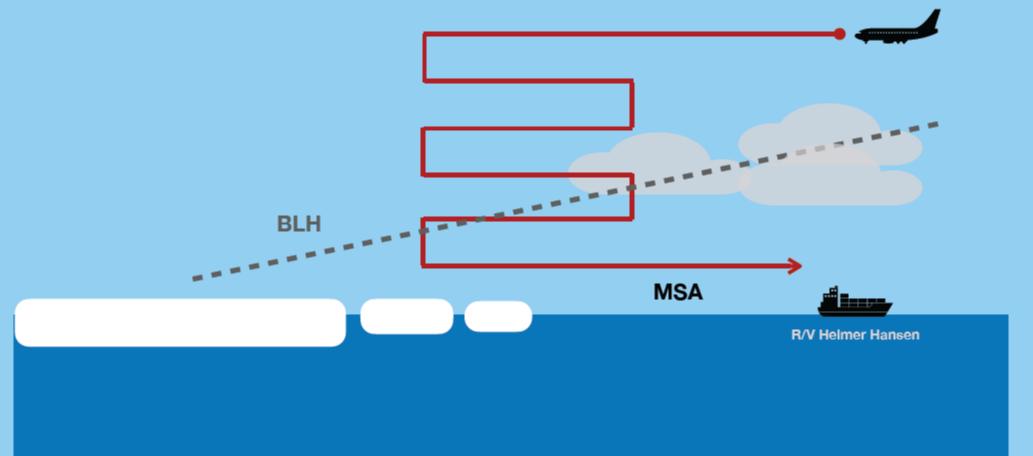
- CMP22 and CGR4 for radiation
- CIP
- PIP, Nephelometer (CNRS)
- PVM100, CDP
- Nevzorov probe
- SEA, LWC300
- UHSAS for aerosols
- FSSP300 for aerosols and droplets

3. Other instrumentation (SAFIRE)


- Thermodynamic standard package with fast/slow water vapour and temperature
- Aircraft dynamics standard package (winds)
- Licor 7500A
- G2401 for CO, CO2
- KH20
- Video cam at surface and to the right

Activities parallel to HALO-(AC)³ - Kiruna

Purpose


- isotope composition of evaporation flux
- conservation of d-excess signal during BL growth
- ship intercomparison

Sequence: Box pattern with

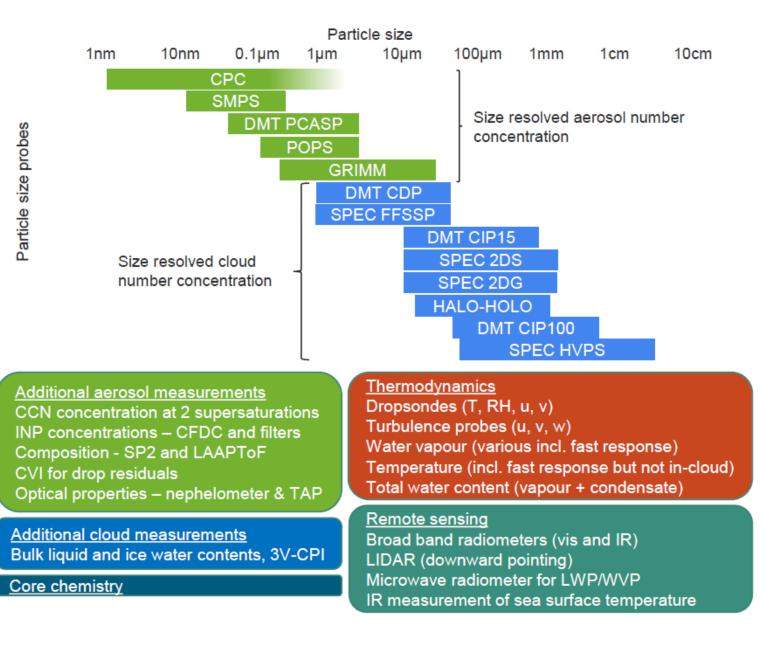
- 1. horizontal legs above BLH
- 2. horizontal leg at entrainment height
- 3. horizontal legs within BL
- 4. horizontal leg(s) at MSA

Met Office Steven Abel, Paul Field, Ben Murray, Tom Choularton steven.abel@metoffice.co.uk

Arctic Cold Air Outbreaks (ACAO) experiment

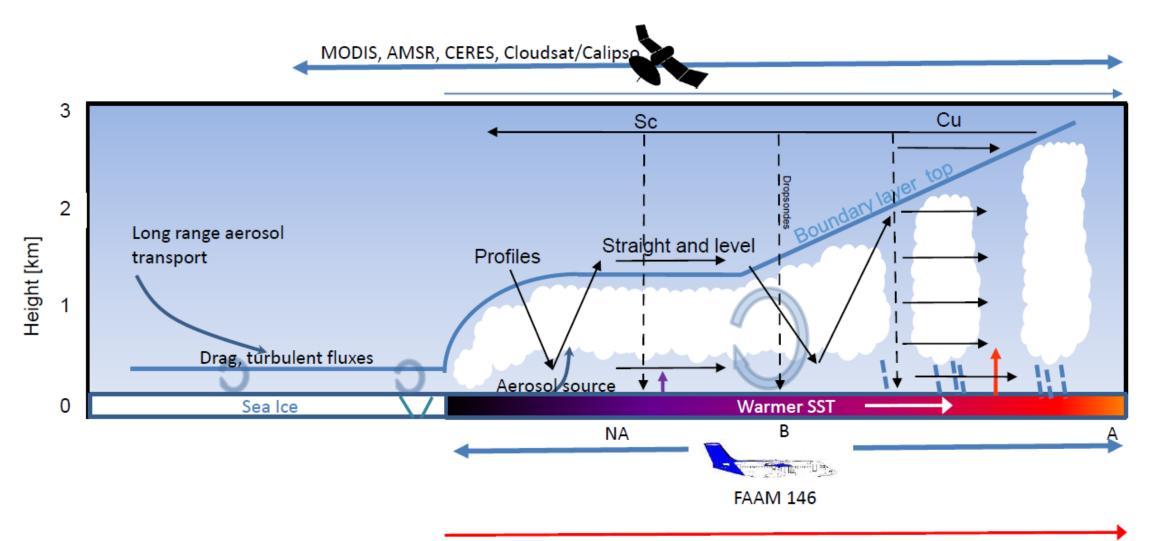
- Campaign status
- Motivation/objectives
- Proposed sorties
- Instrumentation
- Forecast support

NASA Worldview, 21st March 2021



Activities parallel to HALO-(AC)³ - Kiruna

Instrumentation for ACAO



Study of the aerosol, cloud and boundary layer evolution from the MIZ to Scandinavia

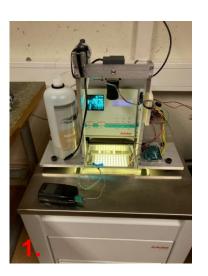
Linking in with a wider regional network of observations (HALO-AC³, ISLAS, MC2)

 \sim 24 to 36 hours for airmass to travel from MIZ to Scandinavia

UiO **University of Oslo**

MC² 2022

Robert David, Tim Carlsen, Franziska Hellmuth, Britta Schaefer, Astrid Bragstad Gjelsvik, Stefan Hofer, TRUDE STORELVMO


A MERICAN AND A SA AND A STRANGE

Scientific Objectives

- 1) Ice-nucleating particles
- 2) Improve precipitation estimates from radar in Arctic
- 3) Cirrus cloud property retrievals In situ comparison
- 4) Cloud phase distribution

Measurement capabilities

1) Offline ice-nucleating particles (portable)

- Coriolis impinger for high resolution (200 L/min)
- PM10 filters for continuous monitoring (38 L/min)

2) Precipitation Measurements, Andenes, NO

- Multi Angle Snowfall Camera (U. of Utah)
- Precipitation Imaging Package (U. of Utah)
- Micro rain radar? (UiB)

3) Alomar Observatory, Andenes, NO

- Tropospheric Lidar
- Micro rain radar
- All-sky camera
- HaloCam and potentially, Polarization Cam (U. Leipzig)

4) INCAS King Air for co-located flights

- 2000 km range
- SPEC Hawkeye
- Holographic cloud probe (UiO/AS) or DMT CAPS

Flight patterns

- 1) Lagrangian Spiral descent over MRR (particle model)
- 2) Sawtooth (CGCs, SIP, cirrus)
- 3) Horizontal and stacked ladders (phase distribution, cirrus)

Questions?