Flight Report

HALO-AC3_HALO_20220312_RFO2

Warm Air Intrusion 1—Day 1

Objectives:

- First real science flight during $\operatorname{HALO}-(A C)^{3}$
- First of three consecutive flights looking at the same Warm Air Intrusion 1 (WAI1)
- This WAI1 considers a truly extreme event, see figure below (2-m temperature anomaly fields).
- We aim to follow it on its way northward through the Fram Strait.
https://climatereanalyzer.org/wx/fcst/?mdl_id=gfs\&dm id=arc-lea\&wm id=t2anom

Mission PI HALO:

Flight times:

HALO Crew	
Mission PI	Manfred Wendisch
HAMP	Martin Hagen
WALES	Georgios Dekoutsidis
SMART/VELOX	Johannes Röttenbacher
specMACS	Veronika Pörtge
Dropsondes	Henning Dorff
Camera	Vera Schemann
Pilots	Marc Puskeiler Michael Grossrubatscher
Engineer	Sebastian Gerstner
HALO	
Take off	$08: 22$ UTC
Touch down	$16: 44$ UTC

Weather situation during the flight:

At all altitudes ($500 \mathrm{hPa}, 850 \mathrm{hPa}$, sea level) a strong ridge with a north-westerly axis blocks zonal winds. Supported by a steering low between Iceland and Greenland on its western flank a strong northerly flow transports warm and humid air into the Fram Strait. This northern wind pattern is obvious from the ground to high altitudes, see the maps below.

Surface Analysis: 12 March 2022, 12 UTC

500 hPa Geopotential and Temperature, 12 March 2022

850 hPa Geopotential and Wind, 12 March 2022
08 UTC
12 UTC
16 UTC

HALO AC3 202220312_HALO_RFO2
EPSG:7775

Sea Level Pressure and Wind, 12 March 2022

Overview of flight:

To characterize the northward-flowing humid and warm air mass, the pattern illustrated below was flown (in white the sea ice is depicted). It aims to cover the northerly water vapor transport, the variability in water vapor concentration and the north-south temperature gradient. 19 Drop sondes were released (positions marked by red crosses including times in UTC in the figure below). The track includes paths parallel to the sea ice edge over open ocean and sea ice, as well as a track perpendicular to the ice edge. Most of the flight took place in altitudes higher than flight level FL410 (about 12.5 km).

Clouds in different levels were observed, see the following maps below. The vertically integrated water vapor and transport fields are also shown in their successive order throughout the flight ($8,12,16$ UTC). The blue line indicates the flight path.

Vertically Integrated Water Vapor Transport (IVT), 12 March 2022

08 UTC

12 UTC

$\underset{\text { HALO AC3 20220312_HALO_RFO2 }}{\text { EPSG:7755350 }}$

16 UTC

HALO AC3 202220312_HALO_RFO2
EPSG:7775

Vertically Integrated Water Vapor (IWV), 12 March 2022
08 UTC
12 UTC
16 UTC

Cloud Cover and Sea Level Pressure, 12 March 2022

08 UTC

12 UTC

16 UTC

Instrument Status:

HALO	
BAHAMAS	
BACARDI	
HAMP Radar	
HAMP Radiometer	
WALES	
SMART	
VELOX	
SpecMACS	
Dropsondes	

Table 1: Instrument status as reported after the flight for all instruments on HALO.

Flight Logs (all times in UTC)

08:08 Engine on
08:15 Taxi
08:22 Take off
Only low clouds, cloud-free above
08:31 We climb, FL230
08:34 FL300, almost cloud-free

08:37 Reaching FL320, we stay at this altitude for a while, later on we climb slowly
08:40 FL350, awesome view
08:45 We are reaching the sea
08:50 FL405, $12 \mathrm{~km},-66^{\circ} \mathrm{C}$
08:53 FL410m $12.2 \mathrm{~km},-67^{\circ} \mathrm{C}$
09:00 We obtain permission to drop sondes as we like We are in Iridium with Planet all the time
09:11 We are well above the clouds currently
09:21 For lidar, the clouds are already too high, we cannot climb higher at the moment, Halo with its fuel is still too heavy. A pity, high cirrus, only little or no low clouds
09:24 Reaching WP1
09:27 DS01 (DS ... Drop Sonde Release)
09:36 DSO2
Many clouds, mostly high stuff, but with low optical thickness
09:45 Reaching WP2
09:51 End of turn, we need about 6 minutes for the turn
Nice Sc clouds beneath, we see our own contrail after the turn

10:03 DS03
We still stay at FL410, $12 \mathrm{~km},-70^{\circ} \mathrm{C}$
10:17 DS04
10:20 Reaching WP3, start turning curve
Nice clouds with precipitation
10:26 End of curve, WP3
So far clear sky above flight level
10:38 DS05
10:46 WP4, start curve
10:52 end curve, WP4
Unstable iridium

11:01 DS06
11:02 We start climbing another 2000 feet

11:08 FL430 from now on
11:12 DS07
11:21 WP5, start curve
11:27 end curve, WP5
11:28 we are just below the tropopause
11:31 DS08
11:37 thin but high clouds
11:43 DS09
12:02 Many clouds, mostly below of us
12:03 WP6, start curve
12:09 end curve, WP6
12:22 thick clouds below

12:24 We are just below the tropopause, and the cloud top is more or less in our flight altitude
12:32 DS10
Nice clouds below
12:51 Sea ice can be seen through optically thin cloud layer
12:53 DS11
12:57 WP7, start curve
13:03 End curve, WP7
13:05 DS12 released earlier than planned, because of ATC restrictions
We can partly see the surface
Mostly cirrus now
A thin cirrus above flight level, major cirrus to in flight level
13:29 WP8, start curve
13:35 End curve, WP8

13:36 Climbing to FL450, about 500 meters above cloud top Cloud top at 12.5 km , corresponding to the lidar data from Georgios
13:42 Reaching FL450
13:48 WP9, start curve
13:55 end curve, WP9
45 minutes lost due to curves during entire flight
14:10 DS13
14:27 DS14
14:44 DS15
15:01 DS16
15:18 DS17
15:35 DS18

15:42 DS19
16:16 Start descending
16:44 Landing

Thanks to the team!

