

Radar-lidar synergy on HALO

Target discrimination and cloud properties

<u>Florian Ewald¹</u>, Silke Groß¹, Martin Wirth¹, Julien Delanoë², Clémantyne Aubry²

- 1) Institute of Atmospheric Physics (DLR) Oberpfaffenhofen, Germany
- 2) LATMOS/IPSL/UVSQ/CNRS, Guyancourt, France

HALO-(AC)3 – 1st quicklook meeting 26 March 2022 – Kiruna, Sweden

Knowledge for Tomorrow

Our approach – Combining different sensitivities

Different penetration depths of existing remote sensing methods

Why we need radar, lidar, and solar radiance observations to constrain ice cloud microphysics

Florian Ewald¹, Silke Groß¹, Martin Wirth¹, Julien Delanoë², Stuart Fox³, and Bernhard Mayer⁴

¹Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
²LATMOS/UVSQ/IPSL/CNRS, Guyancourt, France
³Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
⁴Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany

Combined ice cloud retrieval: Physical basis

Exploting different scattering regimes by using different wavelengths

DLR LATMOS

Combined ice cloud retrieval: Physical basis

Exploting different scattering regimes by using different wavelengths

Combined ice cloud retrieval: The algorithm

DLR LATMOS

· · · ·

DLR LATMOS

2 8 a

DLR LATMOS

8 00

Common flight RF06 2016/03/16

FAAM BAe-146 HALO

Suomi NPP, VIIRS 1040 UTC, Visible

Common flight – HALO and FAAM BAe-146 HALO-(AC)3 RF06, 2022/03/16

Common flight – HALO and FAAM BAe-146 HALO-(AC)3 RF06, 2022/03/16

Varcloud input – WALES and MIRA measurements HALO-(AC)3 RF06, 2022/03/16

DLR LATMOS

Varcloud input – WALES and MIRA measurements HALO-(AC)3 RF06, 2022/03/16

DLR LATMOS

Varcloud mask – Input mask and target discrimination HALO-(AC)3 RF06, 2022/03/16

ATMOS

Varcloud result – Ice water content and effective radius HALO-(AC)3 RF06, 2022/03/16

Varcloud result – Ice water content and effective radius HALO-(AC)3 RF06, 2022/03/16

LATMOS

8 (80)

Varcloud result – Comparison to *in situ* HALO-(AC)3 RF06, 2022/03/16

quicklook provided by Chris Reed

Varcloud result – Comparison to *in situ* HALO-(AC)3 RF06, 2022/03/16

quicklook provided by Chris Reed

Radar-lidar synergy on HALO during HALO-(AC)3

Summary and outlook

Instrument masks / Target classification

- Consolidated instrument mask for radar-lidar curtain
- Ice / mixed / supercooled discrimination

Ice cloud microphysics

- Retrieval of IWC, N_{ice}, reff
- Combined analysis with H₂O measurements from WALES "How does enhanced moist transport into the Arctic change the ice cloud optical and micro-physical properties and the radiation budget?"

Further retrieval development towards EarthCARE

- Microphysics in supercooled and mixed-phased regions
- Validation with collocated insitu from Polar/FAAM/ATR
 - → PhD Clémantyne Aubry (LATMOS / DLR)

