Allomorphy between tone and segments in Yucunany Mixtepec
An optimality-theoretic account

Eva Zimmermann (Leipzig University)

October 10, 2014

P&P 10, Konstanz
Phonologically conditioned suppletive allomorphy (PCSA)

(1) **PCSA** (cf., for example, Paster 2006)
The surface representation/effect of one morpheme M is different depending on the phonological context and this difference cannot be attributed to phonological changes independently expected in this context.
(1) **PCSA**
(cf., for example, Paster 2006)
The surface representation/effect of one morpheme M is different depending on the phonological context and this difference cannot be attributed to phonological changes independently expected in this context.

(2) **Segmental PCSA in Moroccan Arabic** (Mascaro 2007)

<table>
<thead>
<tr>
<th>BASE</th>
<th>3.Sg.Masc</th>
<th>Possible analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. jafu</td>
<td>jafuh</td>
<td>‘error’ 3.Sg.M ↔ /h/ /V__</td>
</tr>
<tr>
<td>b. ktab</td>
<td>ktabu</td>
<td>‘book’ 3.Sg.M ↔ /u/ /C__</td>
</tr>
</tbody>
</table>
Phonologically conditioned suppletive allomorphy (PCSA)

(1) **PCSA**
(cf., for example, Paster 2006)
The surface representation/effect of one morpheme M is different depending on the phonological context and this difference cannot be attributed to phonological changes independently expected in this context.

(2) **Segmental PCSA in Moroccan Arabic** (Mascaro 2007)

<table>
<thead>
<tr>
<th>Base</th>
<th>3.Sg.Masc</th>
<th>Possible analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. jafu</td>
<td>jafuh</td>
<td>‘error’ 3.Sg.M ↔ /h/ /V__</td>
</tr>
<tr>
<td>b. ktab</td>
<td>ktabu</td>
<td>‘book’ 3.Sg.M ↔ /u/ /C__</td>
</tr>
</tbody>
</table>

→ poly-representational analysis
Non-concatenative ‘PCSA’

- non-concatenative ‘PCSA’: in (3), different operations (gemination, vowel lengthening) apply
- both operations can be analysed in autosegmental phonology as addition of a µ
non-concatenative ‘PCSA’: in (3), different operations (gemination, vowel lengthening) apply

both operations can be analysed in autosegmental phonology as addition of a μ

Non-concatenative ‘PCSA’ in Asante Twi (Dolphyne 1996, Paster 2010)

(3) Non-concatenative ‘PCSA’ in Asante Twi (Dolphyne 1996, Paster 2010)

<table>
<thead>
<tr>
<th>Base</th>
<th>PAST (+Obj)</th>
<th>Possible analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. tɔ</td>
<td>tɔː</td>
<td>μ + μ</td>
</tr>
<tr>
<td>dane</td>
<td>daneː</td>
<td>μ μ μ μ μ</td>
</tr>
<tr>
<td>b. nom</td>
<td>nomː</td>
<td>μ + μ μ μ μ μ μ μ μ</td>
</tr>
<tr>
<td>ɔpameː</td>
<td>ɔpamː</td>
<td>μ μ μ μ μ μ μ μ</td>
</tr>
</tbody>
</table>

Eva Zimmermann (Leipzig U)
Non-concatenative ‘PCSA’

- non-concatenative ‘PCSA’: in (3), different operations (gemination, vowel lengthening) apply
- both operations can be analysed in autosegmental phonology as addition of a μ

(3) *Non-concatenative ‘PCSA’ in Asante Twi* (Dolphyne 1996, Paster 2010)

<table>
<thead>
<tr>
<th>Base</th>
<th>Past (+Obj)</th>
<th>Possible analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. tɔ ‘to buy’</td>
<td>tɔːː</td>
<td>μ + μ</td>
</tr>
<tr>
<td>dane ‘to turn’</td>
<td>daneː</td>
<td>μ</td>
</tr>
<tr>
<td>b. nom ‘to drink’</td>
<td>nomː</td>
<td>μ + μ</td>
</tr>
<tr>
<td>ṣpameː ‘s/he sewed (it)’</td>
<td>ṣpamː</td>
<td>μ</td>
</tr>
</tbody>
</table>

→ mono-representational analysis
Main Claim

- propose an analysis for a phonologically predictable allomorphy in Yucunany Mixtepec Mixtec (=YM)
 - a morphological low tone with different surface effects, or
 - the realization of additional segments
Main Claim

- propose an analysis for a phonologically predictable allomorphy in Yucunany Mixtepec Mixtec (=YM)
 - a morphological low tone with different surface effects, or
 - the realization of additional segments

- an argument for **contrastive prosodic specification in the underlying form**:

 different underlying syllable structures = different surface effects

 ➞ a prediction of OT and Richness of the Base
1. Introduction

2. Allomorphy in Yucunany Mixtepec

3. A monorepresentational analysis for YM

4. Implications and further prediction

5. Summary and Conclusion
Allomorphy in Yucunany Mixtepec
Mixtec languages

- indigenous languages, spoken in southern Mexico (Otomanguean)
- most communities have less than 50,000 speakers (McKendry 2013)

(4) State of Oaxaca

(©OpenStreetMap contributors, www.openstreetmap.org/copyright)
Background on Yucunany Mixtepec Mixtec (YM)
(Pike & Ibach 1978, Paster & Beam 2004a,b, Paster 2007, 2012)

- no codas, restricted set of initial onset clusters
- three tones: H (=\=\acute{V}), M (=\acute{V}), L (=\grave{V}), and contour tones
- vowel length is not contrastive – default assumption: TBU=\sigma
 (‘VV(VV)’ notated to have enough space for contour tones!)
- underlined V’s=nasalized V’s
1. Sg formation in YM

- a low tone is added and creates a contour on the final σ (5-a)
- a low tone overwrites a base tone on the final σ (5-b)
- a segmental allomorph /–yù/ surfaces (5-c)

(5) **Tonal allomorphy in Yucunany Mixtepec (Paster&Beam 2004:3-4)**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>nàmá</td>
<td>‘soap’</td>
<td>nàmáà</td>
</tr>
<tr>
<td></td>
<td>tìtzi</td>
<td>‘stomach’</td>
<td>tìtziì</td>
</tr>
<tr>
<td>b.</td>
<td>la’la</td>
<td>‘mucus’</td>
<td>la’là</td>
</tr>
<tr>
<td></td>
<td>xá’nù</td>
<td>‘cigarette’</td>
<td>xá’nù</td>
</tr>
<tr>
<td>c.</td>
<td>sòkò</td>
<td>‘shoulder’</td>
<td>sòkòyù</td>
</tr>
<tr>
<td></td>
<td>tutù</td>
<td>‘paper’</td>
<td>tutùyù</td>
</tr>
</tbody>
</table>
1. Sg formation in YM: context generalizations

A. a low tone is added and **creates a contour** for H-final stems

(6) nàmá ‘soap’ nàmáà ‘my soap’ L H → L HL
 xínìí ‘hat’ xínìī ‘my hat’ H LH → H LHL
1. Sg formation in YM: context generalizations

A. a low tone is added and creates a contour for H-final stems
 (6) nàmá 'soap' nàmáà 'my soap' L H → L HL
 xínií 'hat' xíniíì 'my hat' H LH → H LHL

B. a low tone overwrites M on final σ
 (7) la'la 'mucus' la'là 'my mucus' M M → M L
 xá'nù 'cigarette' xá'nù 'my cigarette' H M → H L
1. Sg formation in YM: context generalizations

A. a low tone is added and **creates a contour** for H-final stems

(6) nàmá ‘soap’ nàmáà ‘my soap’ L H → L HL
 xínìí ‘hat’ xínìíì ‘my hat’ H LH → H LHL

B. a low tone **overwrites M** on final σ

(7) la’la ‘mucus’ la’là ‘my mucus’ M M → M L
 xá’nù ‘cigarette’ xá’nù ‘my cigarette’ H M → H L

→ if this would not create an LH L sequence

(8) yùúti ‘sand’ yùútiì ‘my sand’ LH M → LH ML
 yòóso ‘metate’ yòósoò ‘my metate’ LH M → LH ML
1. Sg formation in YM: context generalizations

A. a low tone is added and **creates a contour** for H-final stems
 (6) nàmá ‘soap’ nàmáà ‘my soap’ L H → L HL
 xínìí ‘hat’ xínìíì ‘my hat’ H LH → H LHL

B. a low tone **overwrites M** on final σ
 (7) la’la ‘mucus’ la’là ‘my mucus’ M M → M L
 xá’nú ‘cigarette’ xá’nù ‘my cigarette’ H M → H L

→ if this would not create an LH L sequence
 (8) yùúti ‘sand’ yùútiì ‘my sand’ LH M → LH ML
 yòóso ‘metate’ yòósoò ‘my metate’ LH M → LH ML

→ or an L L sequence
 (9) tìtzi ‘stomach’ tìtziì ‘my stomach’ L M → L ML
 kwà’a ‘man’s sister’ kwà’aà ‘my man’s sister’ L M → LML
1. Sg formation in YM: context generalizations

A. a low tone is added and **creates a contour** for H-final stems
 (6) nàmá ‘soap’ nàmáà ‘my soap’ L H → L HL
 xínií ‘hat’ xíniìì ‘my hat’ H LH → H LHL

B. a low tone **overwrites M** on final σ
 (7) la’la ‘mucus’ la’là 'my mucus’ M M → M L
 xá’nú ‘cigarette’ xá’nù ‘my cigarette’ H M → H L

→ if this would not create an LH L sequence
 (8) yùúti ‘sand’ yùútiì ‘my sand’ LH M → LH ML
 yòóso ‘metate’ yòósoù ‘my metate’ LH M → LH ML

→ or an L L sequence
 (9) tìtzi ‘stomach’ tìtziì ‘my stomach’ L M → L ML
 kwà’a ‘man’s sister’ kwà’aà ‘my man’s sister’ L M → LML

C. a segmental allomorph **/–yù/ surfaces** if the stem ends in an L-toned σ
 (10) sòkò ‘shoulder’ sòkòyù ‘my shoulder’ L L → L L yù
 tutù ‘paper’ tutùyù ‘my paper’ M L → M L yù
1. Sg is ‘marked by a floating L tone that associates to the end of the root’ (p.71)
1. Scg is ‘marked by a floating L tone that associates to the end of the root’ (p.71)

- a different allomorph /yù/ for bases ending in L

→ homophony avoidance
Theoretical question

Is a monorepresentational analysis possible?

Why does an additional low tone sometimes create a new contour tone and sometimes overwrite an underlying base tone?

How can the addition of a tone and the realization of a segmental string follow from a single underlying representation?
Theoretical question

Is a monorepresentational analysis possible?

- Why does an additional low tone sometimes creates a new contour tone and sometimes overwrites an underlying base tone?
Theoretical question

Is a monorepresentational analysis possible?

- Why does an additional low tone sometimes create a new contour tone and sometimes overwrite an underlying base tone?
- How can the addition of a tone and the realization of a segmental string follow from a single underlying representation?
A monorepresentational analysis for YM
A monorepresentational analysis:

A segmental /yu/ + L; the former only realized as last resort

\[1.\text{Sg} \leftrightarrow \text{yu} /\#__ \]
1 Non-realization of /yu/

- the /yu/ underlyingly lacks a \(\sigma \) node and since \(\text{DEP-}\sigma \) (11-a) is higher ranked than \(\text{MAX-S} \) (11-b), the morpheme is preferably not realized (\(\Rightarrow \) morphemes that are realized in all contexts have an underlying \(\sigma \))
- the L must be realized due to undominated \(\text{MAX-L} \) (11-c)

\[(11)\]

\begin{align*}
\text{a. DEP} & \quad \text{Assign a violation mark for every output } \sigma \text{ without an input correspondent.} \\
\text{DEP} & \quad \sigma \\
\text{b. MAX} & \quad \text{Assign a violation mark for every input segment without an output correspondent.} \\
\text{MAX} & \quad S \\
\text{c. MAX} & \quad \text{Assign a violation mark for every input L-tone without an output correspondent.} \\
\text{MAX} & \quad L
\end{align*}
A monorepresentational analysis for YM

Preference for not realizing the /yu/ but realization of the L-tone ▶(6)

<table>
<thead>
<tr>
<th></th>
<th>L₁</th>
<th>H₂</th>
<th>Lₐ</th>
<th></th>
<th>Max</th>
<th>Dep</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ₁</td>
<td>σ₂</td>
<td>σ₃</td>
<td></td>
<td></td>
<td>σ</td>
<td></td>
</tr>
<tr>
<td>na</td>
<td>ma</td>
<td>yu</td>
<td></td>
<td></td>
<td>Max</td>
<td>Dep</td>
<td>Max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L₁</th>
<th>H₂</th>
<th>Lₐ</th>
<th></th>
<th>Max</th>
<th>Dep</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ₁</td>
<td>σ₂</td>
<td>σ₃</td>
<td></td>
<td></td>
<td>σ</td>
<td></td>
</tr>
<tr>
<td>na</td>
<td>ma</td>
<td>yu</td>
<td></td>
<td></td>
<td>Max</td>
<td>Dep</td>
<td>Max</td>
</tr>
</tbody>
</table>

- **a.**

<table>
<thead>
<tr>
<th></th>
<th>L₁</th>
<th>H₂</th>
<th>Lₐ</th>
<th></th>
<th>Max</th>
<th>Dep</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ₁</td>
<td>σ₂</td>
<td>σ₃</td>
<td></td>
<td></td>
<td>σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>na</td>
<td>ma</td>
<td>yu</td>
<td></td>
<td></td>
<td>Max</td>
<td>Dep</td>
<td>Max</td>
</tr>
</tbody>
</table>

- **b.**

<table>
<thead>
<tr>
<th></th>
<th>L₁</th>
<th>H₂</th>
<th>Lₐ</th>
<th></th>
<th>Max</th>
<th>Dep</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ₁</td>
<td>σ₂</td>
<td>σ₃</td>
<td></td>
<td></td>
<td>σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>na</td>
<td>ma</td>
<td>yu</td>
<td></td>
<td></td>
<td>Max</td>
<td>Dep</td>
<td>Max</td>
</tr>
</tbody>
</table>

- **c.**

<table>
<thead>
<tr>
<th></th>
<th>L₁</th>
<th>H₂</th>
<th>Lₐ</th>
<th></th>
<th>Max</th>
<th>Dep</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>σ</td>
<td>σ</td>
<td></td>
<td>Max</td>
<td>Dep</td>
<td>Max</td>
<td></td>
</tr>
<tr>
<td>na</td>
<td>ma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contour creation vs. overwriting

- contour tones are penalized by $^*\text{CONTOUR}_\sigma$ ($=^*\text{CNT}_\sigma$) (13-a)
- a contour is created with base-final H’s since MAX-H (13-b) and MAX-L dominate $^*\text{CNT}_\sigma$
- overwriting is predicted since $^*\text{CNT}_\sigma$ dominates MAX-M (13-c)

(13)

a. $^*\text{CNT}_\sigma$ Assign a violation mark for every σ that is associated to more than one tone. (Yip 2002:80)

b. MAX_H Assign a violation mark for every input H-tone without an output correspondent.

c. MAX_M Assign a violation mark for every input M-tone without an output correspondent.
(14) **Floating L creates a contour with a base-final H 𝛾(6)**

<table>
<thead>
<tr>
<th></th>
<th>L₁</th>
<th>H₂</th>
<th>Lₐ</th>
<th>MAX L</th>
<th>MAX H</th>
<th>DEP σ</th>
<th>*CNT_σ</th>
<th>MAX M</th>
<th>MAX S</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>na</td>
<td>ma</td>
<td>yu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>na</td>
<td>ma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- A monorepresentational analysis for YM

Eva Zimmermann (Leipzig U)
Allomorphy in Yucunany Mixtepec
P&P 10, Konstanz
A monorepresentational analysis for YM

Floating L overwrites a base-final M ➔(7)

<table>
<thead>
<tr>
<th></th>
<th>M₁</th>
<th>M₂</th>
<th>L_a</th>
<th>Max</th>
<th>Max</th>
<th>Dep</th>
<th>*CNTσ</th>
<th>Max</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>σᵢ</td>
<td>σᵢᵢ</td>
<td>la’</td>
<td>L_a</td>
<td>Max</td>
<td>H</td>
<td>σ</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b</td>
<td>σᵢ</td>
<td>σᵢᵢ</td>
<td>la’</td>
<td>L_a</td>
<td>Max</td>
<td></td>
<td></td>
<td>*</td>
<td>**</td>
</tr>
</tbody>
</table>

Eva Zimmermann (Leipzig U)
Allomorphy in Yucunany Mixtepec
P&P 10, Konstanz
No adjacent L-initial syllables

- no overwriting of M if two adjacent σ’s both associated with an L at their left edge would result
- a positional, non-local OCP (16) banning two adjacent σ’s starting both with an L

![Equation]

Assign a violation mark for every pair of adjacent σ’s that are associated with an initial L.
(17) *No adjacent L-initial σ: Contour creation for M-final bases I*(8)*

<table>
<thead>
<tr>
<th>L_1</th>
<th>H_2</th>
<th>M_3</th>
<th>L_a</th>
<th>Max</th>
<th>*</th>
<th>Max</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max</td>
<td>*</td>
<td>Max</td>
<td>Max</td>
</tr>
<tr>
<td>σ_1</td>
<td>σ_{ii}</td>
<td>σ_i</td>
<td>σ_{ii}</td>
<td>Max</td>
<td>*</td>
<td>Max</td>
<td>Max</td>
</tr>
<tr>
<td>yu</td>
<td>ti</td>
<td>yu</td>
<td></td>
<td>Max</td>
<td>*</td>
<td>Max</td>
<td>Max</td>
</tr>
</tbody>
</table>

- **a.**

- **b.**
No adjacent L-initial σ: Contour creation for M-final bases II

<table>
<thead>
<tr>
<th></th>
<th>L_1</th>
<th>M_2</th>
<th>L_a</th>
<th>Max</th>
<th>L</th>
<th>Max</th>
<th>M</th>
<th>Max</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_i</td>
<td>σ_{ii}</td>
<td>yu</td>
<td>Max</td>
<td>$L_{\sigma_l} L_{\sigma}$</td>
<td>Max</td>
<td>M</td>
<td>Max</td>
<td>S</td>
</tr>
<tr>
<td>a.</td>
<td>ti</td>
<td>tzi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>L_1</td>
<td>L_a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Realization of /yu/ as last resort

- association of L to bases ending in an L is excluded by *[TT]: contour tones (adjacent tones associated to the same TBU) must be different
- realization of /yu/ as last resort to satisfy MAX-L becomes optimal

(19) *[TT] Assign a violation mark for every pair of adjacent identical tones that are associated to one TBU.
(20) *No adjacent L’s: realization of /–yù/ (10)*

<table>
<thead>
<tr>
<th></th>
<th>M_1</th>
<th>L_2</th>
<th>L_a</th>
<th>*[TT]</th>
<th>M_{AX}</th>
<th>D_{EP}</th>
<th>*L_{σ}L_{σ}</th>
<th>M_{AX}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>M_1</td>
<td>L_2</td>
<td>L_a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ_i</td>
<td>σ_{ii}</td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>tu</td>
<td>tu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>M_1</td>
<td>L_a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>σ_i</td>
<td>σ_{ii}</td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tu</td>
<td>tu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>M_1</td>
<td>L_2</td>
<td>L_a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>σ_i</td>
<td>σ_{ii}</td>
<td>σ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>tu</td>
<td>tu</td>
<td>yu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(21)

YM: complete ranking

\[
\text{MAX-L} \rightarrow *[TT] \\
\text{MAX-H} \rightarrow \text{DEP-} \sigma \rightarrow *_{\sigma} L_{\sigma} L_{\sigma} \\
\rightarrow *_{\sigma} \text{CNT}_{\sigma} \\
\rightarrow \text{MAX-M} \\
\rightarrow \text{MAX-S}
\]
Summary

- a monorepresentational analysis:
 - a floating tone and
 - a segmental string that is only realized as last resort
Summary

- A monorepresentational analysis:
 - a floating tone and
 - a segmental string that is only realized as last resort

- The learner is faced with an instance of incomplete neutralization: in 3 of 4 possible (phonological) contexts, she is only provided with a subset of evidence for the complete representation (only the tone, not the segmental content)
Implications and further prediction
(22-a) and (22-b) are both possible input representations in OT

(22)

\[\begin{array}{c} \sigma \\ yu \end{array} \]

\(\triangleright \) realized in all contexts

\(\triangleright \) realized as a last resort
Implications and further prediction

Richness of the base and underlying contrast

- (22-a) and (22-b) are both possible input representations in OT

\[(22) \quad \begin{align*}
\text{a.} & \quad \sigma \\
\text{b.} & \quad \text{yu}
\end{align*}\]

- realized in all contexts
- realized as a last resort

- the analysis based on DEP-^{σ} implies that this difference between underlying forms has a crucial surface effect
Implications and further prediction

Richness of the base and underlying contrast

- (22-a) and (22-b) are both possible input representations in OT

\[(22) \quad \sigma \quad yu\]

\(\text{a. } \sigma \quad yu\) \(\implies \text{realized in all contexts}\)

\(\text{b. } yu\) \(\implies \text{realized as a last resort}\)

- the analysis based on DEP-σ implies that this difference between underlying forms has a crucial surface effect

- independent arguments for contrastive syllabification in, for example, Elfner (2006), Iosad (2013), or Vaux (2013)

\(\implies \text{an economy argument: a lexical contrast is reduced to a difference in underlying prosodic structure}\)
morphemes triggering lengthening of a preceding vowel in La Paz Aymara (Andes, spoken in Bolivia and Peru)

(23) Vowel lengthening in the future (Briggs 1976, Hardman 2001)

<table>
<thead>
<tr>
<th>Base</th>
<th>Future</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. sara</td>
<td>saraː</td>
<td>B265+266</td>
</tr>
<tr>
<td>‘go’</td>
<td>‘(l) will go’</td>
<td></td>
</tr>
<tr>
<td>b. apa</td>
<td>apaːtam</td>
<td>H211</td>
</tr>
<tr>
<td>‘bring, have’</td>
<td>‘he will bring’</td>
<td></td>
</tr>
<tr>
<td>c. alja</td>
<td>aljaːma</td>
<td>H211</td>
</tr>
<tr>
<td>‘sell’</td>
<td>‘I will sell’</td>
<td></td>
</tr>
</tbody>
</table>
More allomorphy involving defective segmental morphemes: Aymara

- whenever double-lengthening is expected, /-jaː/ surfaces
- no superlong vowels: alternative repair to realize both ‘lengthenings’

(24) **Allomorphy between i- and ja (Beesley 2000)**

a. warmi-ːːi-
 - women-Vb-1>3.Fut
 - ‘I will be a women’

 warmija: *warmiːːi-

b. quljqi-ni-ːːi-ta
 - money-possessor-Vb-1>3.Fut-FS
 - ‘You will have money’

 quljqinijaːta *quljqiniːːi-ta
/ja/ underlyingly lacks a σ and is not realized if lengthening possible:
-ja/ underlyingly lacks a σ and is not realized if lengthening possible:
 - realization of /ja/ implies a violation of DEP-\(\sigma\) and is dispreferred
 - MAX-\(\mu\) demands that its \(\mu\) must be realized: lengthening of preceding V
Aymara: monorepresentational analysis

- /-ja/ underlyingly lacks a σ and is not realized if lengthening possible:
 - realization of /ja/ implies a violation of DEP-σ and is dispreferred
 - Max-µ demands that its µ must be realized: lengthening of preceding V

→ realization of /-ja/ as last resort to realize the µ
(25) **Autosegmental analysis of Aymara**

<table>
<thead>
<tr>
<th>Underlying:</th>
<th>Allomorph 1: V-lengthening</th>
<th>Allomorph 2: Realization of /ja/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Underlying:

- **Input:** ...
- **Output:** ...

Allomorph 1: V-lengthening

- **Input:** ...
- **Output:** ...

Allomorph 2: Realization of /ja/

- **Input:** ...
- **Output:** ...

Annotations:

- **Dep-σ ≫ *V♭, Max-S**
- **Max-μ, *V♭: ≫ Dep-σ**

Notes:

- Eva Zimmermann (Leipzig U)
- Allomorphy in Yucunany Mixtepec
- P&P 10, Konstanz
Summary and Conclusion
A monorepresentational account of allomorphy

- for an account of allomorphy in YM where realization of only an additional tone alternates with realization of segments
A monorepresentational account of allomorphy

- For an account of allomorphy in YM where realization of only an additional tone alternates with realization of segments

 → crucial assumption: **prosodically defective segments are only realized as a last resort**
A monorepresentational account of allomorphy

- for an account of allomorphy in YM where realization of only an additional tone alternates with realization of segments

 ➔ crucial assumption: **prosodically defective segments are only realized as a last resort**

- extension of this account to Aymara where a non-concatenative allomorph alternates with a segmental allomorph as well
A monorepresentational account of allomorphy

- for an account of allomorphy in YM where realization of only an additional tone alternates with realization of segments

 ➔ crucial assumption: **prosodically defective segments are only realized as a last resort**

- extension of this account to Aymara where a non-concatenative allomorph alternates with a segmental allomorph as well

- prosodically defective morphemes are independently predicted in OT: an economy argument if they can account for apparently lexical contrasts/allomorphy pattern