A Correspondence-theoretic Account of Fixed-Segmentism Reduplication

Eva Zimmermann

University of Leipzig

January 10, 2008
Outline

1. FSR and OT
 - Introduction
 - Alderete et al.: 1999

2. Backcopying
 - Morphological Backcopying as typological misprediction?
 - Morphological backcopying in Siroi
 - Morphological backcopying in Seereer-Siin

3. Root-and-Pattern Morphology
 - Hebrew Denominal formation (Ussishkin (1999))
 - Segment-counting
 - Parametrising of faithfulness constraints I

4. Segment-counting Fixed-Segment Reduplication
 - Alderete (1999)
 - Parametrising faithfulness constraints II

5. Conclusion
Fixed segmentism reduplication

In (morphological) FSR, reduplication is accompanied by addition of an affix which partially overwrites the reduplicant.

(1) English /schm/-reduplication

a. table table-schmable
b. plan plan-schman
c. string string-schming
d. apple apple-schmapple
Fixed segmentism reduplication

In (morphological) FSR, reduplication is accompanied by addition of an affix which partially overwrites the reduplicant.

(1) English /schm/-reduplication

a. table table-schmable
b. plan plan-schman
c. string string-schming
d. apple apple-schmapple
Analyses

- Optimality theory: **Correspondence theory** (Alderete et al.: 1999)
- arguments against such an OT-approach (Nevins: 2004):
 - it predicts unattested cases of morphological backcopying
 - it predicts unattested segment-counting FSR systems
Analyses

- Optimality theory: **Correspondence theory** (Alderete et al.: 1999)
- Arguments against such an OT-approach (Nevins: 2004):
 - It predicts unattested cases of morphological backcopying
 - It predicts unattested segment-counting FSR systems
Analyses

➢ Optimality theory: **Correspondence theory** (Alderete et al.: 1999)
➢ arguments against such an OT-approach (Nevins: 2004):
 - it predicts unattested cases of morphological backcopying
 - it predicts unattested segment-counting FSR systems
Analyses

- Optimality theory: **Correspondence theory** (Alderate et al.: 1999)
- Arguments against such an OT-approach (Nevins: 2004):
 - It predicts unattested cases of morphological backcopying
 - It predicts unattested segment-counting FSR systems
Claim

FSR is captured best by a correspondence-theoretic analysis:

- FSR patterns involving backcopying of the FSR affix to the base is clearly a possibility in the languages of the world
- unattested segment-counting FSR is excluded by correspondence theory using independently motivated parametrization of optimality-theoretic constraints
Claim

FSR is captured best by a correspondence-theoretic analysis:

1. FSR patterns involving backcopying of the FSR affix to the base is clearly a possibility in the languages of the world

2. Unattested segment-counting FSR is excluded by correspondence theory using independently motivated parametrization of optimality-theoretic constraints
Claim

FSR is captured best by a correspondence-theoretic analysis:

1. FSR patterns involving backcopying of the FSR affix to the base is clearly a possibility in the languages of the world

2. Unattested segment-counting FSR is excluded by correspondence theory using independently motivated parametrization of optimality-theoretic constraints
Outline

1. FSR and OT
 - Introduction
 - Alderete et al.: 1999

2. Backcopying
 - Morphological Backcopying as typological misprediction?
 - Morphological backcopying in Siroi
 - Morphological backcopying in Seereer-Siin

3. Root-and-Pattern Morphology
 - Hebrew Denominal formation (Ussishkin (1999))
 - Segment-counting
 - Parametrising of faithfulness constraints I

4. Segment-counting Fixed-Segment Reduplication
 - Alderete (1999)
 - Parametrising faithfulness constraints II

5. Conclusion
(2) **Correspondence Theory (McCarthy and Prince (1995))**

Input: \(Af_{\text{RED}} + \text{Stem} \)

Output: Reduplicant Base

IO-Faithfulness
BR-Identity
Input

- the FSR affix (/schm/)
- the stem
- the abstract formant RED which consists of no phonological material of its own but whose “content [...] is determined by the base” (Nelson 2002:321)

Combining the affix schm and consonant-initial bases leads to clusters such as */fmt/* which are excluded in English by high-ranked markedness constraints.

/>schm/ and the reduplicants onset compete for realisation and this competition is resolved by MAXIO and MAXBR.
Input

- the FSR affix (/schm/)
- the stem
 - the abstract formant RED which consists of no phonological material of its own but whose “content [...] is determined by the base” (Nelson2002:321)

Combining the affix schm and consonant-initial bases leads to clusters such as */fmt/ which are excluded in English by high-ranked markedness constraints.

/ schm/ and the reduplicants onset compete for realisation and this competition is resolved by MAXIO and MAXBR.
Input

- the FSR affix (/schm/)
- the stem
- the abstract formant RED which consists of no phonological material of its own but whose “content [...] is determined by the base” (Nelson 2002:321)

Combining the affix schm and consonant-initial bases leads to clusters such as */fmt/ which are excluded in English by high-ranked markedness constraints.

➢ /schm/ and the reduplicants onset compete for realisation and this competition is resolved by MAXIO and MAXBR.
Input

- the FSR affix (/schm/)
- the stem
- the abstract formant RED which consists of no phonological material of its own but whose “content [...] is determined by the base” (Nelson2002:321)

Combining the affix schm and consonant-initial bases leads to clusters such as */fmt/ which are excluded in English by high-ranked markedness constraints.

/ schm/ and the reduplicants onset compete for realisation and this competition is resolved by MAX_{IO} and MAX_{BR}.
Input

- the FSR affix (/schm/)
- the stem
- the abstract formant RED which consists of no phonological material of its own but whose “content [...] is determined by the base” (Nelson2002:321)

Combining the affix schm and consonant-initial bases leads to clusters such as */fmt/ which are excluded in English by high-ranked markedness constraints.

/schm/ and the reduplicants onset compete for realisation and this competition is resolved by MAXIO and MAXBR.
Input

- the FSR affix (/schm/)
- the stem
- the abstract formant RED which consists of no phonological material of its own but whose “content [...] is determined by the base” (Nelson2002:321)

Combining the affix schm and consonant-initial bases leads to clusters such as */ʃmt/ which are excluded in English by high-ranked markedness constraints.

/ʃchm/ and the reduplicants onset compete for realisation and this competition is resolved by \(\text{Max}_{IO} \) and \(\text{Max}_{BR} \).
English: \(\text{MAX}\text{IO} \gg \text{MAX}\text{BR} \)

<table>
<thead>
<tr>
<th>(t_1a_2b_3l_4e_5\text{-sch}_6m_7 \text{-RED})</th>
<th>(\text{MAX}\text{IO})</th>
<th>(\text{MAX}\text{BR})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (t_1a_2b_3l_4e_5 \text{-sch}_6m_7a_2b_3l_4e_5)</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b. (\text{sch}_6m_7a_2b_3l_4e_5 \text{-sch}_6m_7a_2b_3l_4e_5)</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>c. (\text{sch}_6m_7a_2b_3l_4e_5 \text{-t}_1a_2b_3l_4e_5)</td>
<td>*!</td>
<td>* *</td>
</tr>
<tr>
<td>d. (t_1a_2b_3l_4e_5 \text{-t}_1a_2b_3l_4e_5)</td>
<td>!</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. FSR and OT
 - Introduction
 - Alderete et al.: 1999

2. Backcopying
 - Morphological Backcopying as typological misprediction?
 - Morphological backcopying in Siroi
 - Morphological backcopying in Seereer-Siin

3. Root-and-Pattern Morphology
 - Hebrew Denominal formation (Ussishkin (1999))
 - Segment-counting
 - Parametrising of faithfulness constraints I

4. Segment-counting Fixed-Segment Reduplication
 - Alderete (1999)
 - Parametrising faithfulness constraints II

5. Conclusion
The system predicts cases of **morphological backcopying** – The FSR affix “backcopies” from the reduplicant to the base:

(4) *English*: $\text{Max}_{BR} \gg \text{Max}_{IO}$

<table>
<thead>
<tr>
<th>English morpheme</th>
<th>Max_{BR}</th>
<th>Max_{IO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1a_2b_3l_4e_5$-sch_6m_7-RED</td>
<td>\ast</td>
<td></td>
</tr>
<tr>
<td>a. $t_1a_2b_3l_4e_5$-$sch_6m_7a_2b_3l_4e_5$</td>
<td>\ast</td>
<td></td>
</tr>
<tr>
<td>b. $sch_6m_7a_2b_3l_4e_5$-$sch_6m_7a_2b_3l_4e_5$</td>
<td>\ast</td>
<td>*</td>
</tr>
<tr>
<td>c. $sch_6m_7a_2b_3l_4e_5$-$t_1a_2b_3l_4e_5$</td>
<td>\ast*</td>
<td>*</td>
</tr>
<tr>
<td>d. $t_1a_2b_3l_4e_5$-$t_1a_2b_3l_4e_5$</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

⇒ a typological misprediction of the system?
The system predicts cases of **morphological backcopying** –
The FSR affix “backcopies” from the reduplicant to the base:

(4) **English’**: $\text{MAX}_{BR} \gg \text{MAX}_{IO}$

<table>
<thead>
<tr>
<th></th>
<th>MAX_{BR}</th>
<th>MAX_{IO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1 a_2 b_3 l_4 e_5$-sch$_6 m_7$-RED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. $t_1 a_2 b_3 l_4 e_5$-sch$_6 m_7 a_2 b_3 l_4 e_5$</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>b. $\text{sch}_6 m_7 a_2 b_3 l_4 e_5$-sch$_6 m_7 a_2 b_3 l_4 e_5$</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>c. $\text{sch}_6 m_7 a_2 b_3 l_4 e_5$-t$_1 a_2 b_3 l_4 e_5$</td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td>d. $t_1 a_2 b_3 l_4 e_5$-t$_1 a_2 b_3 l_4 e_5$</td>
<td></td>
<td>* *!</td>
</tr>
</tbody>
</table>

→ a typological misprediction of the system?
The system predicts cases of **morphological backcopying** –
The FSR affix “backcopies” from the reduplicant to the base:

\[(4) \text{ English'}: \text{MAX}_{\text{BR}} \gg \text{MAX}_{\text{IO}}\]

<table>
<thead>
<tr>
<th></th>
<th>\text{MAX}_{\text{BR}}</th>
<th>\text{MAX}_{\text{IO}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{t}_1\text{a}_2\text{b}_3\text{l}_4\text{e}_5-\text{sch}_6\text{m}_7-\text{RED}</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>a. \text{t}_1\text{a}_2\text{b}_3\text{l}_4\text{e}_5-\text{sch}_6\text{m}_7\text{a}_2\text{b}_3\text{l}_4\text{e}_5</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>b. \text{sch}_6\text{m}_7\text{a}_2\text{b}_3\text{l}_4\text{e}_5-\text{sch}_6\text{m}_7\text{a}_2\text{b}_3\text{l}_4\text{e}_5</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>c. \text{sch}_6\text{m}_7\text{a}_2\text{b}_3\text{l}_4\text{e}_5-\text{t}_1\text{a}_2\text{b}_3\text{l}_4\text{e}_5</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>d. \text{t}_1\text{a}_2\text{b}_3\text{l}_4\text{e}_5-\text{t}_1\text{a}_2\text{b}_3\text{l}_4\text{e}_5</td>
<td>* *!</td>
<td></td>
</tr>
</tbody>
</table>

⇒ a typological misprediction of the system?
Outline

1 FSR and OT
 - Introduction
 - Alderete et al.: 1999

2 Backcopying
 - Morphological Backcopying as typological misprediction?
 - Morphological backcopying in Siroi
 - Morphological backcopying in Seereer-Siin

3 Root-and-Pattern Morphology
 - Hebrew Denominal formation (Ussishkin (1999))
 - Segment-counting
 - Parametrising of faithfulness constraints I

4 Segment-counting Fixed-Segment Reduplication
 - Alderete (1999)
 - Parametrising faithfulness constraints II

5 Conclusion
In FSR in Siroi, the fixed segmentism /g/ replaces the onset of the second syllable in disyllabic words (5-a,b) and is infixed in monosyllabic words (5-c). This fixed segment does not only appear in the reduplicant, but also in the base:

(5) Reduplication in Siroi (Wells (1979))

a. maye mage-mage ‘good’
b. sungo sugo-sugo ‘big’
c. kuen kugen-kugen ‘tall’
In FSR in Siroi, the fixed segmentism /g/ replaces the onset of the second syllable in disyllabic words (5-a,b) and is infixed in monosyllabic words (5-c). This fixed segment does not only appear in the reduplicant, but also in the base:

(5) Reduplication in Siroi (Wells (1979))

a. maye mage-mage ‘good’

b. sungo sugo-sugo ‘big’

c. kuen kugen-kugen ‘tall’
Outline

1 FSR and OT
 - Introduction
 - Alderete et al.: 1999

2 Backcopying
 - Morphological Backcopying as typological misprediction?
 - Morphological backcopying in Siroi
 - **Morphological backcopying in Seereer-Siin**

3 Root-and-Pattern Morphology
 - Hebrew Denominal formation (Ussishkin (1999))
 - Segment-counting
 - Parametrising of faithfulness constraints I

4 Segment-counting Fixed-Segment Reduplication
 - Alderete (1999)
 - Parametrising faithfulness constraints II

5 Conclusion
In Seerer, noun class prefixes trigger mutation of the initial consonant.

- voicing mutation (changing a voiced into a voiceless stop (6-a,b))
- continuance mutation (changing a continuant into a stop, (6-c,d))

(6) Consonant mutation in Seerer-Siin (McLaughlin (2000))

<table>
<thead>
<tr>
<th>Sg</th>
<th>Pl</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. o-cir</td>
<td>jir</td>
<td>‘sick person’</td>
</tr>
<tr>
<td>b. o-kawul</td>
<td>gawul</td>
<td>‘griot’</td>
</tr>
<tr>
<td>c. o-pad</td>
<td>fad</td>
<td>‘slave’</td>
</tr>
<tr>
<td>d. o-tew</td>
<td>rew</td>
<td>‘woman’</td>
</tr>
</tbody>
</table>

Voicing mutation

Continuancy mutation
In Seerer, noun class prefixes trigger mutation of the initial consonant.

1. voicing mutation (changing a voiced into a voiceless stop (6-a,b))
2. continuancy mutation (changing a continuant into a stop, (6-c,d))

(6) Consonant mutation in Seerer-Siin (McLaughlin (2000))

<table>
<thead>
<tr>
<th>SG</th>
<th>PL</th>
<th>‘description’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. o-cir</td>
<td>jir</td>
<td>‘sick person’</td>
</tr>
<tr>
<td>b. o-kawul</td>
<td>gawul</td>
<td>‘griot’</td>
</tr>
<tr>
<td>c. o-pad</td>
<td>fad</td>
<td>‘slave’</td>
</tr>
<tr>
<td>d. o-tew</td>
<td>rew</td>
<td>‘woman’</td>
</tr>
</tbody>
</table>
In Seerer, noun class prefixes trigger mutation of the initial consonant.

1. voicing mutation (changing a voiced into a voiceless stop (6-a,b))
2. continuancy mutation (changing a continuant into a stop, (6-c,d))

(6) Consonant mutation in Seerer-Siin (McLaughlin (2000))

<table>
<thead>
<tr>
<th>SG</th>
<th>PL</th>
<th>Meaning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. o-cir</td>
<td>jir</td>
<td>‘sick person’</td>
<td></td>
</tr>
<tr>
<td>b. o-kawul</td>
<td>gawul</td>
<td>‘griot’</td>
<td></td>
</tr>
<tr>
<td>c. o-pad</td>
<td>fad</td>
<td>‘slave’</td>
<td></td>
</tr>
<tr>
<td>d. o-tew</td>
<td>rew</td>
<td>‘woman’</td>
<td></td>
</tr>
</tbody>
</table>

Voicing mutation
Continuancy mutation
Agent nouns in Seereer-Siin are derived through reduplication – the reduplicant has the shape CV:

(7) Reduplication in Seerer-Siin: No featural transfer

a. bind ‘write’ o-pii-bind ‘writer’

b. dap ‘launder’ o-taa-dap ‘launderer’

c. gim ‘sing’ o-kii-gim ‘singer’
Agent nouns in Seerer-Siin are derived through reduplication – the reduplicant has the shape CV:

\[(7)\] Reduplication in Seerer-Siin: No featural transfer

a. bind ‘write’ o-pii-bind ‘writer’
b. dap ‘launder’ o-taa-dap ‘launderer’
c. gim ‘sing’ o-kii-gim ‘singer’
Mutation in Seerer is analysed as featural affixation of the features [–cont] and [–voice]. In the continuancy mutation, this (featural) affix overwrites the feature specification of the reduplicant and this change optionally is copied back to the base.

⇒ morphological backcopying (in FSR and more generally) is attested.
Mutation in Seerer is analysed as featural affixation of the features [–cont] and [–voice]. In the continuancy mutation, this (featural) affix overwrites the feature specification of the reduplicant and this change optionally is copied back to the base.

⇒ morphological backcopying (in FSR and more generally) is attested.
(8) Reduplication in Seerer-Siin: Optional featural transfer

d. xoox ‘cultivate’ o-qoo-xoox o-qoo-qoox ‘farmer’
e. fec ‘dance’ o-pee-fec o-pee-pec ‘dancer’
f. war ‘kill’ o-baa-war o-baa-bar ‘killer’
g. riw ‘weave’ o-tii-riw o-tii-tiw ‘weaver’

Mutation in Seerer is analysed as featural affixation of the features [−cont] and [−voice]. In the continuancy mutation, this (featural) affix overwrites the feature specification of the reduplicant and this change optionally is copied back to the base.

⇒ morphological backcopying (in FSR and more generally) is attested.
Outline

1. FSR and OT
 - Introduction
 - Alderete et al.: 1999

2. Backcopying
 - Morphological Backcopying as typological misprediction?
 - Morphological backcopying in Siroi
 - Morphological backcopying in Seereer-Siin

3. Root-and-Pattern Morphology
 - Hebrew Denominal formation (Ussishkin (1999))
 - Segment-counting
 - Parametrising of faithfulness constraints I

4. Segment-counting Fixed-Segment Reduplication
 - Alderete (1999)
 - Parametrising faithfulness constraints II

5. Conclusion
Nevins sees a fundamental problem with the implementation of overwriting through constraint evaluation. He extends his critique to another case of nonconcatenative morphology: the analysis proposed by Ussishkin for overwriting in Hebrew denominal verb formation.

The affixal melody /i – e/ has to be realized inside the base, but since the size of the resulting structure is restricted to bisyllabicity, not all vowels can be parsed and competition arises.

(9) Hebrew Denominal Verb Formation (Ussishkin (1999))

a. dam ‘blood’ dimem ‘to bleed’
b. xam ‘hot’ ximem ‘to heat’
c. xad ‘sharp’ xided ‘to sharpen’
d. cad ‘side’ cided ‘to side with’
Nevins sees a fundamental problem with the implementation of overwriting through constraint evaluation. He extends his critique to another case of nonconcatenative morphology: the analysis proposed by Ussishkin for overwriting in Hebrew denominal verb formation.

The affixal melody /i – e/ has to be realized inside the base, but since the size of the resulting structure is restricted to bisyllabicity, not all vowels can be parsed and competition arises.

(9) Hebrew Denominal Verb Formation (Ussishkin (1999))

a. dam ‘blood’ dimem ‘to bleed’
b. xam ‘hot’ ximem ‘to heat’
c. xad ‘sharp’ xided ‘to sharpen’
d. cad ‘side’ cided ‘to side with’
Nevins sees a fundamental problem with the implementation of overwriting through constraint evaluation. He extends his critique to another case of nonconcatenative morphology: the analysis proposed by Ussishkin for overwriting in Hebrew denominal verb formation.

The affixal melody /i – e/ has to be realized inside the base, but since the size of the resulting structure is restricted to bisyllabicity, not all vowels can be parsed and competition arises.

(9) Hebrew Denominal Verb Formation (Ussishkin (1999))

a. dam 'blood' dimem 'to bleed'
b. xam 'hot' ximem 'to heat'
c. xad 'sharp' xided 'to sharpen'
d. cad 'side' cided 'to side with'
Two separate faithfulness constraints for stem and affix vowels – \textsc{Max-Vowel-Af} and \textsc{Max-Vowel-Stem} – implement this preference for the realization of affix vowels.

\begin{tabular}{ll}
\textbf{Input:} & Affix + Stem \\
\hline
IO-Affix & IO-Stem \\
\hline
\textbf{Output:} & Affix Base
\end{tabular}
Two separate faithfulness constraints for stem and affix vowels – **Max-Vowel-Af** and **Max-Vowel-Stem** – implement this preference for the realization of affix vowels.

\[(10) \text{ Correspondence Theory – stem and affix faithfulness} \]

Input: Affix + Stem

Output: Affix Base

<table>
<thead>
<tr>
<th>IO-AFFIX</th>
<th>IO-STEM</th>
</tr>
</thead>
</table>
(11) Denominal Verb Formation from Biconsonantal Base (Ussishkin (1999))

<table>
<thead>
<tr>
<th></th>
<th>MINWD</th>
<th>MAX-VAf</th>
<th>MAX-Vs</th>
<th>INTEGRITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. d₁a₂m₃e₅m₃</td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. d₁i₄m₃a₂m₃</td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. d₁a₂m₃i₄m₃e₅</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>d. d₁i₄m₃e₅m₃</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
(12) Denominal Verb Formation from Glide-medial Base (Ussishkin (1999))

<table>
<thead>
<tr>
<th>$t_1i_2k_3 + i_4 - e_5$</th>
<th>MINWD</th>
<th>MAX-V_A</th>
<th>MAX-V_S</th>
<th>INTEGRITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. $t_1i_2i_4e_5k_3$</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. $t_1i_4k_3e_5k_3$</td>
<td></td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>c. $t_1i_4j_2e_5k_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. FSR and OT
 - Introduction
 - Alderete et al.: 1999

2. Backcopying
 - Morphological Backcopying as typological misprediction?
 - Morphological backcopying in Siroi
 - Morphological backcopying in Seereer-Siin

3. Root-and-Pattern Morphology
 - Hebrew Denominal formation (Ussishkin (1999))
 - Segment-counting
 - Parametrising of faithfulness constraints I

4. Segment-counting Fixed-Segment Reduplication
 - Alderete (1999)
 - Parametrising faithfulness constraints II

5. Conclusion
This solution should be available for /dam/ as well!

(13) Problematic Candidate with Biconsonantal Base (Nevins (2005))

<table>
<thead>
<tr>
<th></th>
<th>MINWD</th>
<th>MAX-V_{Af}</th>
<th>MAX-V_S</th>
<th>INTEGRITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. d_1a_2m_3e_5m_3</td>
<td>*!</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b. d_1i_4m_3a_2m_3</td>
<td>*!</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>c. d_1a_2m_3i_4m_3e_5</td>
<td>*!</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>d. d_1i_4m_3e_5m_3</td>
<td></td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>e. d_1a_2j_4e_5m_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This solution should be available for /dam/ as well!

(13) Problematic Candidate with Biconsonantal Base (Nevins (2005))

<table>
<thead>
<tr>
<th>(d_1a_2m_3 + i_4 - e_5)</th>
<th>MinWd</th>
<th>Max-VAf</th>
<th>Max-VS</th>
<th>Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (d_1a_2m_3e_5m_3)</td>
<td></td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b. (d_1i_4m_3a_2m_3)</td>
<td></td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>c. (d_1a_2m_3i_4m_3e_5)</td>
<td>*!</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>d. (d_1i_4m_3e_5m_3)</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>e. (d_1a_2j_4e_5m_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

1 FSR and OT
 • Introduction
 • Alderete et al.: 1999

2 Backcopying
 • Morphological Backcopying as typological misprediction?
 • Morphological backcopying in Siroi
 • Morphological backcopying in Seereer-Siin

3 Root-and-Pattern Morphology
 • Hebrew Denominal formation (Ussishkin (1999))
 • Segment-counting
 • Parametrising of faithfulness constraints I

4 Segment-counting Fixed-Segment Reduplication
 • Alderete (1999)
 • Parametrising faithfulness constraints II

5 Conclusion
1. replacing /i/ with /j/ implies deletion of a mora
2. parametrisation of faithfulness constraints is applied to all faithfulness constraints, namely \(\text{Max-\(\mu\)} \)

(14) \(\text{Max-\(\mu\)}: \) Input moras should have correspondent moras in the output.

(15) Analysis of Glide-medial Base under Constraint Parametrization

<table>
<thead>
<tr>
<th>(t_1i_2k_3 + i_4 - e_5)</th>
<th>(\text{Max-}V_{Af})</th>
<th>(\text{Int}_{Af})</th>
<th>(\text{Max-}\mu_{Af})</th>
<th>(\text{Max-}V_{S})</th>
<th>(\text{Int}_{S})</th>
<th>(\text{Max-}\mu_{S})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (t_1i_4e_5k_3)</td>
<td></td>
<td></td>
<td>!</td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>b. (t_1i_4k_3e_5k_3)</td>
<td></td>
<td></td>
<td>!</td>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td>c. (t_1i_4j_2e_5k_3)</td>
<td></td>
<td></td>
<td>!</td>
<td></td>
<td>!</td>
<td>!</td>
</tr>
</tbody>
</table>
1. replacing /i/ with /j/ implies deletion of a mora
2. parametrisation of faithfulness constraints is applied to all faithfulness constraints, namely **Max-μ**

(14) **Max-μ**: Input moras should have correspondent moras in the output.

(15) **Analysis of Glide-medial Base under Constraint Parametrization**

<table>
<thead>
<tr>
<th>t₁i₂k₃ + i₄ - e₅</th>
<th>Max-V_{Af}</th>
<th>Int_{Af}</th>
<th>Max-μ_{Af}</th>
<th>Max-V_{S}</th>
<th>Int_{S}</th>
<th>Max-μ_{S}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. t₁i₄e₅k₃</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b. t₁i₄k₃e₅k₃</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. t₁i₄j₂e₅k₃</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
</tbody>
</table>
replacing /i/ with /j/ implies deletion of a mora

parametrisation of faithfulness constraints is applied to all faithfulness constraints, namely $\text{Max-}\mu$

(14) $\text{Max-}\mu$: Input moras should have correspondent moras in the output.

(15) **Analysis of Glide-medial Base under Constraint Parametrization**

<table>
<thead>
<tr>
<th>$t_1i_2k_3 + i_4 - e_5$</th>
<th>$\text{Max-}V_{Af}$</th>
<th>IntAf</th>
<th>$\text{Max-}\mu_{Af}$</th>
<th>$\text{Max-}V_S$</th>
<th>IntS</th>
<th>$\text{Max-}\mu_S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. $t_1i_4e_5k_3$</td>
<td></td>
<td></td>
<td>!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. $t_1i_4k_3e_5k_3$</td>
<td></td>
<td></td>
<td>!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. $t_1i_4j_2e_5k_3$</td>
<td></td>
<td></td>
<td>!</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(16) Analysis of Biconsonantal Base under Constraint Parametrization

<table>
<thead>
<tr>
<th>d₁a₂m₃ + i₄ - e₅</th>
<th>Max-Vₐf</th>
<th>INTₐf</th>
<th>Max-μₐf</th>
<th>Max-Vₛ</th>
<th>INTₛ</th>
<th>Max-μₛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. d₁a₂m₃e₅m₃</td>
<td>⋆!</td>
<td></td>
<td>⋆</td>
<td>⋆</td>
<td>⋆</td>
<td>⋆</td>
</tr>
<tr>
<td>b. d₁i₄m₃a₂m₃</td>
<td>⋆!</td>
<td></td>
<td>⋆</td>
<td>⋆</td>
<td>⋆</td>
<td>⋆</td>
</tr>
<tr>
<td>c. d₁i₄m₃e₅m₃</td>
<td>⋆</td>
<td></td>
<td>⋆</td>
<td>⋆</td>
<td>⋆</td>
<td>⋆</td>
</tr>
<tr>
<td>d. d₁a₂j₄e₅m₃</td>
<td>⋆!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consequences a

The analysis systematically violates the RAFM.

(17) *Root-Affix Faithfulness Metaconstraint, RAFM (McCarthy and Prince (1995)*

$\text{RootFaith} \gg \text{AffixFaith}$
Consequences b
The Max constraints relativized to specific morphological domains seem to be ranked “in blocks”, i.e. all constraints relativized to affix material are ranked above the corresponding constraints relativized to stems.

The RAFM might be replaced by the metacondition (18)

\begin{align}
\text{(18) } \text{Max-Dep Adjacency:} \\
\text{Let } \alpha \text{ and } \beta \text{ be different morphological domains (e.g root, affix, base-reduplicant), and } \{C_1, \ldots, C_n\} \text{ the set of Max and Dep constraints, then either} \\
\{C_1\alpha \ldots C_n\alpha\} \gg \{C_1\beta \ldots C_n\beta\} \text{ or } \{C_1\beta \ldots C_n\beta\} \gg \{C_1\alpha \ldots C_n\alpha\}.
\end{align}
Consequences b

The Max constraints relativized to specific morphological domains seem to be ranked “in blocks”, i.e. all constraints relativized to affix material are ranked above the corresponding constraints relativized to stems.

The RAFM might be replaced by the metacondition (18)

(18) $\text{Max-Dep Adjacency:}$

Let α and β be different morphological domains (e.g. root, affix, base-reduplicant), and $\{C_1, \ldots, C_n\}$ the set of Max and Dep constraints, then either $\{C_1\alpha \ldots C_n\alpha\} \gg \{C_1\beta \ldots C_n\beta\}$ or $\{C_1\beta \ldots C_n\beta\} \gg \{C_1\alpha \ldots C_n\alpha\}$.
Max-Dep Adjacency licenses the ranking in a. (cf. the analysis of Hebrew) but systematically excludes rankings where stem and affix Max constraints alternate in their ranking:

\begin{align*}
\text{a. } & \text{Max-}V_{\text{Af}} \gg \ldots \gg \text{Max-} \mu_{\text{Af}} \gg \ldots \gg \text{Max-}V_{\text{S}} \gg \ldots \gg \text{Max-} \mu_{\text{S}} \\
\text{b. } & \text{Max-}V_{\text{Af}} \gg \ldots \gg \text{Max-} \mu_{\text{S}} \gg \ldots \gg \text{Max-}V_{\text{S}} \gg \ldots \gg \text{Max-} \mu_{\text{Af}}
\end{align*}
Max-Dep Adjacency licenses the ranking in a. (cf. the analysis of Hebrew) but systematically excludes rankings where stem and affix Max constraints alternate in their ranking:

a. Max-V_Af \gg \ldots \gg \text{Max}-\mu_{Af} \gg \ldots \gg \text{Max}-V_S \gg \ldots \gg \text{Max}-\mu_S

b. Max-V_Af \gg \ldots \gg \text{Max}-\mu_S \gg \ldots \gg \text{Max}-V_S \gg \ldots \gg \text{Max}-\mu_{Af}
Outline

1. FSR and OT
 - Introduction
 - Alderete et al.: 1999

2. Backcopying
 - Morphological Backcopying as typological misprediction?
 - Morphological backcopying in Siroi
 - Morphological backcopying in Seereer-Siin

3. Root-and-Pattern Morphology
 - Hebrew Denominal formation (Ussishkin (1999))
 - Segment-counting
 - Parametrising of faithfulness constraints I

4. Segment-counting Fixed-Segment Reduplication
 - Alderete (1999)
 - Parametrising faithfulness constraints II

5. Conclusion
Varying the size of the root onset could yield different FSR patterns since MAX_{10} prefers realization of more input segments and therefore it effectively compares whether root onset or the affix (fixed segment) is longer.
(19) Wrong prediction for English

<table>
<thead>
<tr>
<th>apple-schm-RED</th>
<th>MAXIO</th>
<th>MAXBR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(20) Inconsistent prediction for English

<table>
<thead>
<tr>
<th>string-schm-RED</th>
<th>MAXBR</th>
<th>MAXIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(19) Wrong prediction for English

<table>
<thead>
<tr>
<th>apple-schm-RED</th>
<th>MAXIO</th>
<th>MAXBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. \textit{app}_2\textit{pp}_1\textit{e}_4-s\textit{chma}_1\textit{pp}_2\textit{e}_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. \textit{sch}_1\textit{m}_2\textit{a}_3\textit{pp}_4\textit{l}_5\textit{e}_6-s\textit{ch}_1\textit{m}_2\textit{a}_3\textit{pp}_4\textit{l}_5\textit{e}_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. \textit{schma}_1\textit{pp}_2\textit{e}_4-a\textit{1pp}_2\textit{e}_3</td>
<td></td>
<td>!*</td>
</tr>
<tr>
<td>d. \textit{a1pp}_2\textit{e}_4-a\textit{1pp}_2\textit{e}_3</td>
<td></td>
<td>!*</td>
</tr>
</tbody>
</table>

(20) Inconsistent prediction for English'

<table>
<thead>
<tr>
<th>string-schm-RED</th>
<th>MAXBR</th>
<th>MAXIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>string-schm-RED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. \textit{str}_1\textit{ng}_2-s\textit{chmi}_1\textit{ng}_2</td>
<td>!**</td>
<td></td>
</tr>
<tr>
<td>b. \textit{sch}_1\textit{m}_2\textit{i}_3\textit{ng}_4-s\textit{ch}_1\textit{m}_2\textit{i}_3\textit{ng}_4</td>
<td></td>
<td>!***</td>
</tr>
<tr>
<td>c. \textit{s}_1\textit{t}_2\textit{r}_3\textit{i}_4\textit{ng}_5-s\textit{1t}_2\textit{r}_3\textit{i}_4\textit{ng}_5</td>
<td></td>
<td>!**</td>
</tr>
</tbody>
</table>
Outline

1. FSR and OT
 - Introduction
 - Alderete et al.: 1999

2. Backcopying
 - Morphological Backcopying as typological misprediction?
 - Morphological backcopying in Siroi
 - Morphological backcopying in Seereer-Siin

3. Root-and-Pattern Morphology
 - Hebrew Denominal formation (Ussishkin (1999))
 - Segment-counting
 - Parametrising of faithfulness constraints I

4. Segment-counting Fixed-Segment Reduplication
 - Alderete (1999)
 - Parametrising faithfulness constraints II

5. Conclusion
Those patterns are excluded by standard means of parametrizing faithfulness constraints to the domains affix and stem:

Constraint Parametrization

- \(\text{Max}_S - \text{Dep}_S \)
- \(\text{Max}_{AF} - \text{Dep}_{AF} \)
- \(\text{Max}_{BR} - \text{Dep}_{BR} \)
Those patterns are excluded by standard means of parametrizing faithfulness constraints to the domains affix and stem:

Constraint Parametrization

\[
\begin{align*}
\text{MAX}_S &= \text{DEP}_S \\
\text{MAX}_A &= \text{DEP}_A \\
\text{MAX}_R &= \text{DEP}_R
\end{align*}
\]
(21) Possible Rankings for English

<table>
<thead>
<tr>
<th>Possible Rankings for English</th>
<th>FaithS</th>
<th>Faith-A</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: apple-schm-RED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. $a_1pp_2l_3e_4$-schma$_1pp_2l_3e_4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. $sch_1m_2a_3pp_4l_5e_6$-sch$_1m_2a_3pp_4l_5e_6$</td>
<td>dd!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. $a_1pp_2l_3e_4$-a$_1pp_2l_3e_4$</td>
<td></td>
<td>mm!</td>
<td></td>
</tr>
<tr>
<td>2: table-schm-RED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. $ta_1b_2l_3e_4$-schma$_1b_2l_3e_4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. $sch_1m_2a_3b_4l_5e_6$-sch$_1m_2a_3b_4l_5e_6$</td>
<td>mdd!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. $t_1a_2b_3l_4e_5$-t$_1a_2b_3l_4e_5$</td>
<td></td>
<td>mm!</td>
<td></td>
</tr>
<tr>
<td>3: plan-schm-RED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. pla_1n_2-schma$_1n_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. $sch_1m_2a_3n_4$-sch$_1m_2a_3n_4$</td>
<td>mmdd!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. $p_1l_2a_3n_4$-p$_1l_2a_3n_4$</td>
<td></td>
<td>mm!</td>
<td></td>
</tr>
<tr>
<td>4: string-schm-RED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. $stri_1ng_2$-schmi$_1ng_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. $sch_1m_2i_3ng_4$-sch$_1m_2i_3ng_4$</td>
<td>mmmdd!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. $s_1t_2r_3i_4ng_5$-s$_1t_2r_3i_4ng_5$</td>
<td></td>
<td>mm!</td>
<td></td>
</tr>
</tbody>
</table>
Predictions

\{\text{Faith}_S, \text{Faith}_{AF}\} \gg \ldots \quad \text{the English pattern}
\{\text{Faith}_{AF}, \text{Faith}_{BR}\} \gg \ldots \quad \text{Backcopying}
\{\text{Faith}_S, \text{Faith}_{BR}\} \gg \ldots \quad \text{complete suppression of the FSR affix}
Outlook

1. the concept of comparative markedness (McCarthy: 2003) solves the final problem: forcing overwriting in languages where realisation of FSR affix and reduplicants onset does not violate any high ranked markedness constraint.

2. the approach Nevins favors:
 - predicts the very same unattested cases of segment counting FSR.
 - is actually less restrictive than the OT approach in Alderete and is clearly capable to capture specific types of segment-counting FSR.
Outlook

1. The concept of comparative markedness (McCarthy: 2003) solves the final problem: forcing overwriting in languages where realisation of FSR affix and reduplicants onset does not violate any high ranked markedness constraint.

2. The approach Nevins favors:
 - Predicts the very same unattested cases of segment counting FSR.
 - Is actually less restrictive than the OT approach in Alderete and is clearly capable to capture specific types of segment-counting FSR.
Outlook

1. the concept of comparative markedness (McCarthy: 2003) solves the final problem: forcing overwriting in languages where realisation of FSR affix and reduplicants onset does not violate any high ranked markedness constraint.

2. the approach Nevins favors:
 - predicts the very same unattested cases of segment counting FSR
 - is actually less restrictive than the OT approach in Alderete and is clearly capable to capture specific types of segment-counting FSR.
Outlook

1. the concept of comparative markedness (McCarthy: 2003) solves the final problem: forcing overwriting in languages where realisation of FSR affix and reduplicants onset does not violate any high ranked markedness constraint.

2. the approach Nevins favors:
 - predicts the very same unattested cases of segment counting FSR
 - is actually less restrictive than the OT approach in Alderete and is clearly capable to capture specific types of segment-counting FSR.
FSR involving backcopying of the FSR affix is clearly a formal possibility employed in human language, while segment-counting FSR is so far unattested. A correspondence-theoretic account of reduplication captures these facts without facing any of the problems Nevins (2005) pointed out for the analysis in Alderete et al. (1999) which are either empirically flawed or find a straightforward solution in independently motivated parametrization for faithfulness constraints.