II. Die Reaktionszeit.

    Die Reaktionszeit kann leicht und genau bestimmt werden, aber es ist schwer zu entscheiden, welche Vorgänge in einer Reaktion enthalten sind, und ganz unmöglich anzugehen, wie sich die gemessene Zeit auf dieselben verteilt. Wir werden sehen, dass die Reaktionszeit für Licht unter günstigen Umständen ungefähr 150 a beträgt. Ich halte es für wahrscheinlich, dass diese Zeit ungefähr zu gleichen Teilen den Vorgängen im Gehirn und den Vorgängen außerhalb desselben zuzuweisen ist. Die letzteren sind: l) die Latenzzeit im Sinnesorgan, 2) die Zeit der Leitung im sensiblen Nerven, 3) die Zeit der Leitung im Rückenmark und im motorischen Nerven, 4) die Latenzzeit im Muskel. Es ist von verschiedenen Physiologen versucht worden, diese Zeiten einzeln zu bestimmen, dieselben sind jedoch sicher viel konstanter als nach den schlecht übereinstimmenden Versuchen zu erwarten wäre. Die im Folgenden beschriebenen Versuche zeigen, dass die mittlere Variation der gemessenen Reaktionszeiten nur ein Zwanzigstel der ganzen Zeit beträgt, und diese geringe Variation können wir in der Hauptsache auf veränderliche Zustände des Gehirns zurückführen. Wenn die Leitungsgeschwindigkeit im Nerven nicht konstant wäre, würde vermutlich die Wahrnehmung von Tönen erheblich gestört sein.

    Die Leitungsgeschwindigkeit in den Nerven ist ein beliebter Gegenstand physiologischer Untersuchungen1) gewesen, die bisher gefundenen Resultate sind jedoch unbefriedigend. Exner gibt im 2. Bande von Hermann's »Handbuch der Physiologie«2) als Resultat der »vollkommen vorwurfsfreien Messungen» von Helmholtz und Baxt die Leitungsgeschwindigkeit gleich 62 m in der Sekunde an, und in demselben Bande und gleichfalls als Resultat von Versuchen von Helmholtz und Baxt setzt Hermann die Geschwindigkeit gleich 33,9005 m in der Sekunde.3) In der Tat scheint die Geschwindigkeit von der Temperatur und von anderen meist in den Versuchsmethoden begründeten Bedingungen abzuhängen. Noch widersprechendere Resultate ergeben Versuche, die (meist mit inkorrekter Anwendung der Reaktionszeit) mit sensiblen Nerven angestellt sind.
 
 

    l) S. die Angaben in Hermann's Hdb. d. Physiol. 2. Bd. II, 14ff.

    2) II, 272.

    3) I, 22.
 
 

    Vorläufig können wir nichts besseres tun, als die Leitungsgeschwindigkeit sowohl für die motorischen als für die sensiblen Nerven ungefähr gleich 33 m in der Sekunde anzunehmen. Es ist wahrscheinlich, dass die Geschwindigkeit im Rückenmark geringer ist, und dass der Nervenimpuls sowohl beim Eintritt in dasselbe als auch beim Austritt, sowie beim Durchgang durch ein Ganglion4) eine Verzögerung erfährt. Bis auf weiteres können wir als Hypothese annehmen, dass, wenn eine Lichtreaktion ausgeführt wird, welche 150s dauert, 50s dazu erforderlich sind, dass der Nervenimpuls von der Netzhaut zum Gehirn und vom Gehirn durch das Rückenmark zu den Muskeln der Hand gelangt. Wenn ein Froschmuskel durch einen Induktionsschlag gereizt wird, so liegt die Latenzzeit zwischen 5 und 10s 5); die Zeit ist vielleicht eben so groß, wenn in den Handmuskeln durch einen Nervenimpuls eine Innervation hervorgerufen wird.

    4) Exner, Pflüg. Arch. VIII., Arch. f. Anat. u, Physiol. 1877. — Francois-Frank u. Pitres, Gazette Hebd. 1878. —Wundt, Mechanik der Nerven II, 45.

    5) Tigerstedt, Arch. f. Anat. u. Physiol. 1885 und an den von ihm zitierten Stellen.
 
 

    Es vergeht sicher auch eine Latenzzeit im Sinnesorgan, während der Reiz in einen Nervenimpuls verwandelt wird. Bei den sogenannten mechanischen Sinnen ist diese Zeit sehr kurz, wenn aber die Netzhaut durch einen Lichteindruck gereizt wird, so findet, wie man allgemein annimmt, ein chemischer Prozess statt, und dieser kann, namentlich bei schwachen Lichteindrücken, von ziemlich langer Dauer sein.6) Wir wissen, dass ein Lichteindruck eine beträchtliche Zeit auf die Netzhaut wirken muss, damit das Maximum von Intensität der Empfindung hervorgerufen wird; daraus lässt sich indes kein Schluss ziehen in Bezug auf die hier betrachtete Zeit. Ich habe gezeigt,7) dass ein farbiges Licht von mäßiger Intensität 0,6—2,75s (je nach der Farbe und je nach der Versuchsperson verschieden) auf die Netzhaut wirken muss, damit es erkannt werden kann, und weiter, dass diese Zeit in arithmetischer Reihe wächst, wenn die Intensität des Lichtes in geometrischer Reihe abnimmt. Die Zeit wird aber beträchtlich länger, wenn der Farbe ein weißes Licht folgt, da das zweite Licht, wie es scheint, den auf der Netzhaut bereits vorhandenen Eindruck verlöscht. Unter diesen Umständen musste ein violettes Licht 12,5s auf die Netzhaut wirken, um erkennbar zu werden. Es ist also wahrscheinlich, dass innerhalb dieses Intervalls das Licht noch nicht in einen Nervenimpuls umgesetzt war. Diese Versuche scheinen uns daher eine Minimalzeit zu liefern. Die bekannten Versuche mit rotierenden Scheiben zeigen, dass Lichteindrücke von mäßiger Intensität gerade zusammenschmelzen, wenn sie einander in Intervallen von 25s folgen. Es scheint also, dass in dem Zeitraume von 25s die Netzhaut erregt wird und den normalen Zustand wieder anzunehmen beginnt. Wenn diese Annahme richtig ist, so wäre dies die Maximaldauer für die hier betrachtete Zeit. Wir wissen ziemlich sicher, dass die Zeit, welche vergeht, bis ein Lichtreiz in einen Nervenimpuls umgesetzt ist, sich in gleichem Sinne ändert mit der Intensität des Lichtes, und dürfen vielleicht annehmen, dass diese Zeit für Tageslicht, welches von einer weißen Fläche reflektiert wird, 15—20s beträgt.
 

    6) v. Wittich, Zeitschr. f. rat. Med.XXXI, u. Exner, Pflüg. Arch. VII, fanden die Reaktionszeit kürzer, wenn der Sehnerv durch einen elektrischen Strom, als wenn die Netzhaut durch Licht gereizt wurde. Die Differenz kann aber von anderen Faktoren herrühren, welche eben so gut der Reaktionszeit als der Latenzzeit im Sinnesorgan zuzurechnen sein können.

    7) Philos. Stud. III, 4. — Brain XXI.
 
 

    Diese Betrachtungen lassen uns vermuten, dass bei einer Reaktion auf Licht, wenigstens für geübte Versuchspersonen, nur etwa die Hälfte der ganzen Zeit, d. h. 75s , zu den Vorgängen im Gehirn gebraucht wird. Wir fragen natürlich, was geschieht im Gehirn, nachdem der Nervenimpuls dort angekommen ist? Man hat gewöhnlich angenommen, dass der größte Teil der Reaktionszeit in Anspruch genommen werde vom Apperzeption- und Willensprozess; ich glaube indes, dass diese Vorgänge, wenn sie überhaupt vorhanden sind, nur sehr kurz dauern. Apperzeption und Wollen sind, wie man annimmt, hervorgerufen durch Änderungen in der Großhirnrinde, dagegen können Reflexbewegungen, welche Sinnesreizen entsprechen, z. B. die Kontraktion der Pupille oder das Blinzeln, noch ausgeführt werden, wenn die Großhirnrinde weggenommen ist, und ein Tier kann in diesem Zustande Bewegungen ausführen, welche der Natur eines wirkenden Reizes entsprechen. Wirft man eine Taube deren Großhirn entfernt ist, in die Luft, so wird sie nicht nur fliegen, sondern auch Hindernisse vermeiden und in ganz natürlicher Weise wieder auf den Boden gelangen. Sie hat demnach Lichteindrücke, es scheinen ihr aber die Vorstellungen zu fehlen, entweder, weil sie Farbe und Gestalt nicht unterscheidet, oder weil ihr die Intelligenz fehlt die Beschaffenheit derselben zu unterscheiden. In gleicher Weise kann wahrscheinlich eine Reaktion der von uns betrachteten Art, sofern nur eine hinreichend lange Einübung vorausgegangen ist ohne Beteiligung der Großhirnrinde ausgeführt werden, d. h. ohne Apperzeption und Willensprozess. Wenn eine Versuchsperson im Ausführen von Reaktionen ungeübt ist (in diesem Falle ist die Reaktionszeit in der Regel länger als 150s, so geht sehr wahrscheinlich die Willenszeit dem Wirken des Reizes voraus. Die Versuchsperson ruft dann durch eine willkürliche Anstrengung, deren Dauer bestimmt werden kann, in den Leitungsbahnen zwischen dem Zentrum für einfache Lichtreaktionen und dem Zentrum für Zuordnung von Bewegungen, sowie in dem letzteren Zentrum selbst einen Zustand labilen Gleichgewichts hervor. Wenn dann ein Nervenimpuls zu dem ersten dieser Zentren gelangt, verursacht er Änderungen nach zwei Richtungen: ein Impuls geht zur Großhirnrinde und bringt dort eine Apperzeption hervor, welche dem Reiz entspricht, zu gleicher Zeit verfolgt ein zweiter Impuls einen Weg auf welchem er wenig Widerstand findet nach dem Zentrum für Zuordnung von Bewegungen, und die zugehörige Nervenerregung, die schon vorbereitet ist und nur noch auf das Signal wartet, wird vom Zentrum nach den Handmuskeln gesandt. Wird die Reaktion oft gemacht, so wird der ganze Gehirnprozess automatisch, der Reiz schlägt von selbst den vorbereiteten Weg nach dem motorischen Zentrum ein und löst den Bewegungsimpuls aus.8)

    8) Diese Hypothese über die Natur der Reaktion verliert nichts von ihrer Wahrscheinlichkeit, wenn wir annehmen, dass die Zentra für Empfindung und Apperzeption nicht von einander verschieden sind, oder gar, dass bei der Reaktion das Gehirn in irgend einer geheimnisvollen Weise »als Ganzes fungiert«. In dieser Abhandlung nehme ich durchgängig an, dass psychische Zustände abhängig sind von Änderungen im Gehirn. Wir wissen allerdings nur wenig über die Funktionen des letzteren. Ich mache daher auch möglichst wenig Annahmen, und diese müssen bei der Betrachtung streng unterschieden werden von den positiven Resultaten, deren Veröffentlichung Zweck dieser Abhandlung ist.
 
 

    Ich komme nun zu den Resultaten meiner Versuche. Ich gebe hier nur die Werte an, welche ich für B. (Dr. G. O. Berger) und C. (Verfasser dieser Abhandlung) erhalten habe; ähnliche Versuche habe ich gemacht mit anderen Personen von verschiedenem Alter, Geschlecht, verschiedener Beschäftigung u. s. w., aber diese Versuche können wohl besser betrachtet werden, nachdem wir die Resultate sorgfältiger und zahlreicher Beobachtungen mit geübten Personen kennen gelernt haben. Zunächst haben wir zu betrachten die einfache Reaktionszeit für Lichteindrücke. War diese Zeit zu messen, und war alles vorbereitet, wie es im vorigen Abschnitt beschrieben ist, so fixierte der Reagierende den Punkt, an welchem das Licht zu erscheinen hatte. Der Ablesende setzte darauf das Uhrwerk in Bewegung und ließ ungefähr eine Sekunde später mit Hilfe des Fallchronometers den Lichtreiz erscheinen. Der Reagierende hob die Hand so rasch als möglich, und die Zeigerstellungen vor und nach dem Versuch ergaben unmittelbar die Zeit zwischen dem Erscheinen des Lichtreizes und dem Beginn der Muskelkontraktion. In keinem einzigen Falle, soweit ich mich erinnern kann, ergab sich eine vorzeitige Reaktion. Die einzige Störung ging vom Chronoskop aus, wenn das Gangwerk von der vibrierenden Feder nicht richtig reguliert wurde. Wenn es der Ablesende rechtzeitig bemerkte, ließ er überhaupt keinen Lichtreiz wirken. Bemerkt wurde diese gelegentliche Unordnung im Chronoskop jedesmal, so dass sie die Genauigkeit der gegebenen Zeiten nicht beeinträchtigen kann, aber der Reagierende wurde zuweilen dadurch gestört, so dass seine Reaktionen in einzelnen Fällen vielleicht etwas unregelmäßiger geworden sind. Überall in dieser Abhandlung gebe ich die Resultate sämtlicher Reihen und sämtlicher Einzelreaktionen an; außerdem füge ich dem Resultat jeder Reihe noch einen korrigierten Wert hinzu, den man nach der oben beschriebenen Methode erhält. Diese Korrektur schließt alle abnormen Fälle aus. In den Tabellen gebe ich das in bekannter Weise berechnete Mittel aus den Abweichungen jeder einzelnen Reaktion von dem Mittel der Reihe, welcher sie angehört (V).

    Die in den Tabellen unter R gegebenen Mittel sind (wenn nicht ausdrücklich etwas anderes bemerkt ist) aus den 26 Versuchen, welche eine Reihe ausmachen, berechnet, die unter R' gegebenen Mittel aus den 20 Versuchen der korrigierten Reihen. Die Tabelle I gibt die Resultate von 20 Reihen einfacher Lichtreaktionen, die in Pausen innerhalb sechs Monaten gemacht sind.

Tabelle I.


 

 

B.
C.

 

R
V
R'
V'
R
V
R'
V'
12.1. 140 10 141 8 144 12 143 8
145 10 143 6 136 9 138 5
16. 137 16 139 11 133 16 128 11
156 10 155 7 147 15 150 11
30. 131 13 131 9 149 9 151 6
152 13 149 9 143 11 143 9
27. II. 148 14 147 8 146 10 144 7
160 13 162 8 144 9 144 6
28. 139 13 142 11 149 9 149 6
161 15 163 9 146 9 146 5
152 13 149 7 144 9 143 6
31. III. 164 14 164 8 163 9 163 6
151 10 153 6 150 8 151 5
3. IV. 133 16 132 11 143 8 144 5
157 9 159 6 138 11 136 7
4. 165 13 170 9 161 9 163 5
5. 144 13 147 9 147 9 148 6
7. 168 9 170 5 148 17 148 9
2. VII. 137 16 140 11 158 12 158 6
4. 152 13 155 9 140 14 145 9
M. 150 13 151 8 146 11 147 7

 

    Die Tabelle zeigt, dass das Mittel aus 520 Reaktionen auf Tageslicht, welches von einer weißen Fläche reflektiert wird, für B. 150, für C. 146s beträgt, oder, wenn die Reihen nach der beschriebenen Methode korrigiert sind, für beide um 1s größer wird. Das Gesamtmittel aus den mittleren Variationen der einzelnen Reihen war für B. 13, für C. 11 s und wurde in den korrigierten Reihen resp. 8 und 7s. Man wird aus der Tabelle ersehen, dass die zu verschiedenen Zeiten gemachten Reihen nur unbedeutend von einander abweichen; die mittlere Variation der Resultate der 20 Reihen ist für B. 9, für C. 5s. Die Reaktionszeit geübter Versuchspersonen ist also eine ganz konstante Größe; nehmen wir irgend eine Reaktion, so ist sie kaum um eine Hundertstel Sekunde verschieden von der vorhergehenden und folgenden und um weniger als zwei Hundertstel Sekunden von den Reaktionen, welche an anderen Tagen und unter anderen Umständen gemacht sind. Dennoch lege ich auf die dritte Dezimalstelle nicht viel Gewicht; wenn die vorliegende Untersuchung zu wiederholen wäre, würden wir wahrscheinlich nicht bis auf eine Tausendstel Sekunde genau dieselben Resultate erhalten. Wenn also z. B. B.'s Reaktionszeit für Licht als 150 s angegeben wird, so meine ich nur, dass dies das Resultat dieser 520 Reaktionsversuche war; wenn wir sie mit anderen Werten zu vergleichen haben und die absolute Länge von B.'s Reaktionszeit angeben wollen, so beschränken wir uns daher am besten darauf zu sagen, dass sie 0.15" beträgt, oder vielleicht noch besser, dass sie zwischen 0.14" und 0.16" liegt.

    In den angeführten Versuchen wurde die Reaktion mit der rechten Hand ausgeführt. Die Zeit ist dieselbe für die linke Hand.9) Ich gebe in Tabelle II das Mittel aus 5 Reihen (150 Reaktionen), die mit der linken Hand auf Licht und in gleicher Weise auf Schall10) ausgeführt sind.

Tabelle II. 11)


 
B.
C.
R
V
R'
V'
R
V
R'
V'
Licht
3.—7. IV.
153
12
156
8
147
11
148
6
Schall
3.-7. IV.
126
8
126
6
122
11
122
7

 

    9) Tischer, Philos. Stud. I, 534.—Merkel, ebda. II, 88. Die von Hall und Hartwell erhaltenen Resultate (Mind. 1883) sind wahrscheinlich unrichtig; sie scheinen die Arbeiten von Tischer und Merkel nicht gekannt zu haben.

    10) Der Schall wurde (wie in allen Fällen, wo die Reaktionszeit für Schall zu messen war) hervorgebracht durch eine Steinkugel von 22 g Gewicht, welche aus einer Höhe von 23 cm auf die hölzerne Basis des Hipp'schen Fallapparates auffiel.

    11) Der Raumersparnis wegen gebe ich in dieser, wie in einigen anderen Tabellen, nur das Gesamtmittel aus den mittleren Variationen der einzelnen Reihen (M. V.).
 
 

    Es ist, wie die späteren Abschnitte dieser Abhandlung zeigen werden, für uns von großem Interesse, dass die Zeit länger ist, wenn die Reaktion mit den Sprachorganen ausgeführt wird. Um diese Zeit zu bestimmen, benutzte ich die beiden obengenannten Schlüssel, den Lippen- und Schallschlüssel. In beiden Fällen sagte der Reagierende so rasch als möglich nach dem Erscheinen des Lichtes »Jetzt!« und diese Bewegung der Sprachorgane brachte die Zeiger des Chronoskops in früher beschriebener Weise zum Stillstehen. Die Resultate dieser Versuche sind in der folgenden Tabelle angegeben. Sie zeigt, dass es ungefähr 30s mehr erfordert, die Reaktion mit den Sprachorganen anstatt mit der Hand auszuführen.

Tabelle III.


 
Schallschlüssel
Lippenschlüssel
B.
C.
B.
C.
1885
R
R'
R
R'
R
R'
R
R'
3. IV.
164
167
177
176
199
199
172
171
161
159
165
165
185
187
173
173
5. IV.
175
176
175
176
199
201
172
173
170
168
175
172
189
186
177
177
7. IV.
168
168
157
159
166
165
185
176
M.
168
168
170
170
188
188
176
174
M. V.
19
10
16
10
11
6
13
8

 

    Außer diesen beiden benutzte ich noch eine andere Methode, um die Dauer der Reaktion mit den Sprachorganen zu bestimmen. Der Reagierende sagte nach dem Erscheinen des Lichtes so rasch als möglich »Jetzt!«; ein zweiter Reagierender öffnete, sobald er diesen Schall hörte, den Telegraphenschlüssel und brachte dadurch die Zeiger des Chronoskops zum Stillstehen. Die Uhr zeigte demnach eine doppelte Reaktionszeit an, die des ersten Reagierenden mit den Sprachorganen auf Licht und die des zweiten Reagierenden mit der Hand auf Schall. Diese zweite Zeit können wir bestimmen; ziehen wir dieselbe von der ganzen Zeit ab, so erhalten wir die Reaktionszeit für die Sprachorgane des ersten Reagierenden. Nimmt man das Mittel aus mehreren Reihen, so wird der Fehler sehr klein. Einer weiteren Anwendung dieser Methode werden wir weiter unten begegnen. Für den gegenwärtigen Zweck wurde sie größtenteils ersetzt durch den Gebrauch des Lippen- und Schallschlüssels; es stellen sich indes bei Anwendung dieser Instrumente einige Schwierigkeiten ein, vorzüglich wenn man es mit ungeübten Personen, z. B. Kindern oder Wahnsinnigen zu tun hat. Die dritte Methode könnte ferner angewandt werden, um die Dauer der Reaktion und ähnlicher Vorgänge bei Tieren zu bestimmen, und ebenso um die Dauer gewisser reflexer Vorgänge zu messen, bei denen die Bewegung schwer zu registrieren ist. Ich gebe in Tab. IV die Resultate von 4 Reihen von Reaktionen, die auf diese Weise angestellt sind, und bei denen Herr H. Wolfe die Schallreaktionen ausführte.

Tabelle IV.


 
B.
C.
R
V
R’
V’
R
V
R’
V'
7.1
349
30
346
20
328
32
321
17
330
37
332
23
327
24
326
14
30.
380
30
372
20
392
27
392
18
357
32
349
19
393
25
393
16
M.
354
32
350
20
360
27
358
16

 

    Wolfe's Reaktionszeit für Schall betrug ungefähr 150s . Die am 30. Januar gemachten Reihen scheinen etwas lange Zeiten ergeben zu haben, die übrigen entsprechen dem Fall, wo die Bewegung der Sprachorgane direkt registriert wurde. Die Länge der Reaktionszeit hängt von Bedingungen ab, die man in zwei Klassen teilen kann, je nachdem sie sich auf den Sinnenreiz oder auf die reagierende Person beziehen. Bei den vorliegenden Versuchen war es eher meine Aufgabe, diese Fehlerquellen zu vermeiden als sie zu untersuchen. Ich benutzte daher immer dieselben Reize und immer dieselben Versuchspersonen. Die einzige variable Bedingung war der veränderliche Zustand der Versuchsperson, der im Wesentlichen abhing von den verschiedenen Graden der Aufmerksamkeit, Ermüdung und Übung. Es erschien wünschenswert, diese Bedingungen gründlich zu untersuchen, einmal weil sie Licht werfen auf die Natur der Gehirnprozesse, und zweitens weil wir, um die Genauigkeit unserer Resultate beurteilen zu können, erst wissen müssen, welchen Einfluss jene Bedingungen auf die Dauer der untersuchten Prozesse ausüben. Die eingehende Betrachtung dieses Gegenstandes kann ich am besten bis an das Ende der Abhandlung verschieben, es wird jedoch vorteilhaft sein, bevor wir weiter gehen, erst die Beziehung der Aufmerksamkeit zur Länge der Reaktionszeit zu betrachten. Man hat gewöhnlich angenommen, dass die Länge der Reaktionszeit von den verschiedenen Graden von Aufmerksamkeit in hohem Maße abhängig sei, und diese Annahme ist ganz natürlich, wenn der größte Teil der ganzen Reaktionszeit von dem Apperzeption- und Willensprozesse in Anspruch genommen wird. Ist dagegen die Reaktion durch Übung automatisch geworden, so kann die Dauer nur wenig abhängig sein von der Anspannung der Aufmerksamkeit während der Reaktion. Die Reaktionszeit würde indes verlängert werden; wenn die Bedingungen derartig wären, dass sie es der Versuchsperson erschwerten, die Leitungsbahn und das motorische Zentrum in Bereitschaft zu halten. Das einfachste Mittel, die Aufmerksamkeit abzulenken, besteht darin, dass man einen Schall hervorbringt, während die Reaktionen zu machen sind. Ich ließ drei Metronome rasch schlagen und klingeln. Die Resultate der unter diesen Umständen angestellten Versuche mit Licht und Schall sind in der folgenden Tabelle angegeben.
 
 

Tabelle V.


 
Licht

 

Schall
 

 

B.
C.
B.
C.
R
R'
R
R'
R
R'
R
R'
2 IV.
149
150
162
159
122
120
121
118
3.
159
159
146
147
124
127
120
119
152
152
144
142
126
124
128
127
4.
146
148
162
161
132
131
137
138
5.
155
155
168
170
119
119
125
124
M.
152
153
156
156
125
124
126
125
M. V.
8
5
10
6
10
6
10
6

 

    Vergleicht man diese Resultate mit den in Tab. I angegebenen, so sieht man; dass die Reaktionszeit für Licht bei B. um 2, bei C. um 10s länger geworden ist. Diese Zuwüchse sind sehr unbedeutend; bei B. liegen sie innerhalb der Grenzen der natürlichen Variation. Die Reaktionszeit für Schall war dieselbe, als wäre das störende Geräusch nicht da. Wundt12) fand, dass die Reaktionszeit durch ein störendes Geräusch beträchtlich verlängert wurde; das lag wahrscheinlich daran, dass die Versuchspersonen noch nicht dazu gelangt waren, die Reaktion automatisch zu machen. Außerdem wurde die Zwischenzeit zwischen dem vorbereitenden Signal und dem Reiz nicht annähernd konstant gehalten, wie es in unseren Versuchen der Fall war. Die Versuche von Obersteiner13) sind nicht derart ausgeführt, dass sie genaue Resultate ergeben konnten.

12) Physiol. Psych. II, 243.

13) Brain 1879.
 
 

    Die Aufmerksamkeit kann noch mehr abgelenkt werden, wenn dem Gehirn, während die Reaktionen zu machen sind, irgend eine andere Beschäftigung aufgetragen wird. Ein gutes Mittel, dies zu erreichen , besteht darin, dass man den Reagierenden möglichst rasch von irgend einer Anfangszahl ausgehend immer wieder 17 addieren lässt. Andererseits kann die Aufmerksamkeit in hohem Grade angespannt werden durch eine wirkliche Anstrengung von Seiten der Versuchsperson. Viele Experimentatoren scheinen das bei allen ihren Versuchen angestrebt zu haben; Exner z. B. sagt14), dass er vor Anstrengung geschwitzt, obgleich er ruhig auf seinem Stuhl gesessen habe. Bei meinen Versuchen wurde die Aufmerksamkeit in einem Zustand gehalten, welchen ich normal nennen werde; die Versuchsperson erwartete den Reiz und reagierte auf denselben , aber strengte ihre Aufmerksamkeit nicht an und beeilte sich nicht besonders. Wir unterscheiden demnach drei Grade von Aufmerksamkeit und bezeichnen sie als gespannt, normal und abgelenkt.
 
  14) Hermann's Hdb. d. Physiol. 2. Bd. II, 287.
 
 
    Die ersten Versuche über diesen Gegenstand wurden im Winter 1883—84 gemacht, bevor das Chronoskop richtig kontrolliert war, die absoluten Zeiten mögen also um ungefähr 10s zu groß oder zu klein sein, die relativen Zeiten sind aber richtig. Als Reize dienten das elektrische Licht einer Puluj'schen Röhre und ein Induktionsschlag von mäßiger Stärke auf den linken Unterarm. Bei diesen Versuchen wurden 15 Reaktionen in einer Reihe ausgeführt und bei den korrigierten Reihen 5 weggelassen. Die Zahlen in der Tabelle sind Mittel aus 10 Reihen.

Tabelle VI.


 
gespannt normal
 
 

 

abgelenkt

 

R V R' V' R V R' V' R
V
R'
V'

12 – 25. II. 1884 B. Licht

189 15 187 8 201 17 197 9 245
28
242
13
 

C.

158 17 156 10 132 16 133 9 153
19
151
10

27. II. — 6. III. 1884 B. Elektischer Reiz

160 13 161 7 165 12 164 7 190
16
189
9
 

C.

147 14 147 8 150 15 150 9 184
21
184
11

 

    Ähnliche Versuche wurden 1885 angestellt; als Reize dienten Tageslicht und Schall. Die in der folgenden Tabelle angegebenen Zeiten sind wie gewöhnlich aus 26 Reaktionen genommen.



Tabelle VII.


 
gespannt normal abgelenkt
R
V
R’
V'
R
V
R'
V'
R
V
R'
V'
  B. Licht
27. II. 144 16 147 7 148 14 147 8 196 26 185 12
131 11 130 8 160 13 162 8 186 26 183 19
28. II. 141 10 143 7 139 13 142 11 178 15 180 11
137 8 139 4 161 15 163 9 179 16 179 10
143 8 144 6 152 13 149 7 194 14 190 9
M. 139 11 141 6 152 14 153 9 187 19 183 12
gespannt
normal
abgelenkt

 

R V R' V' R V R' V' R V R' V'
C.
27. II. 149 13 150 9 146 10 144 7 166 12 167 7
149 7 150 4 144 9 144 6 154 16 156 11
28. II. 146 8 144 5 149 9 149 6 157 13 159 8
146 12 144 8 146 9 146 5 154 9 155 6
140 8 139 5 144 9 143 6 163 14 160 9
M. 146 10 145 6 146 9 145 6 159 13 159 8
B. Schall
2.II. 132 7 132 5 157 11 157 8 193 26 189 13
129 6 129 5 158 19 149 8 188 28 191 19
3.II. 127 14 129 4 155 14 152 7 174 12 173 8
123 9 122 6 147 10 145 6 169 24 163 17
4.II. 127 7 126 5 138 9 139 5 188 24 183 17
M. 128 9 128 5 151 12 148 7 182 23 180 15
C.
2.II. 129 12 126 8 145 10 140 6 166 18 162 12
135 11 135 8 133 12 132 9 156 19 148 14
3.II. 125 12 127 6 141 11 140 8 158 15 161 9
123 12 123 8 142 11 139 6 155 17 155 12
4.II. 131 11 126 8 136 10 133 6 157 15 153 9
M. 129 11 128 8 139 11 137 7 159 17 156 11

 
 
 
 
 

    Ich stelle die Resultate dieser Versuche in der folgenden Tabelle noch einmal zusammen, indem ich die bei normaler Aufmerksamkeit gefundenen Zeiten gleich 0 setze.


Tabelle VIII.


 
B.
C
Aufmerksamkeit gesp. abgel. gesp. abgel.
Elektrisches Licht - 12 +44 +26 +21
Induktionsschlag - 5 +25 - 3 +34
Tageslicht - 13 +35 0 +13
Schall - 23 +31 - 10 +20
M. -13 +34 + 3 +22

 

    Man sieht, dass, wenn das Gehirn anderweitig in Anspruch genommen ist, die Reaktionszeit verlängert wird, wenn auch nicht bedeutend. Auf der anderen Seite ist die Zeit nur wenig kürzer, wenn die Versuchsperson sich sehr anstrengt, schnell zu reagieren. als wenn sie die Reaktion bequem und natürlich ausführt. Diese Versuche unterstützen die Hypothese, dass die eingeübte Reaktion ein automatischer Vorgang ist, welcher die Tätigkeit der Großhirnrinde nur in soweit in Anspruch nimmt, als dieselbe die Bewegung vorbereitet: Ein Nebengeräusch verursachte weder bei B. noch bei C. eine Störung, indem dasselbe offenbar nicht hinderte, die Teile des Gehirns, welche bei einer Reaktion beteiligt sind, in Bereitschaft zu setzen. Wenn dagegen das Gehirn damit beschäftigt war, von einer Zahl aus immer wieder 17 zu addieren, so vermochte es die niederen Zentra nicht so gut in Bereitschaft zu setzen, und die Reaktionszeit wurde verlängert. Andererseits konnte eine besonders starke Anspannung des Willens die Reaktionszeit nur wenig verkürzen, da sich die Leitungsbahn und das motorische Zentrum auch ohne solche Anspannung schon im Zustande labilen Gleichgewichts befanden.

    Es gibt noch einen anderen Weg, um die Aufmerksamkeit abzulenken. Bei der Bestimmung der Dauer normaler Reaktionen folgte der Reiz ungefähr eine Sekunde nach dem Signal, so dass sich die Gehirnteile in einen Zustand vollständiger Bereitschaft zu versetzen vermochten. Man könnte nun erwarten, das wir nicht im Stande waren, diese Teile sehr lange im Zustande labilen Gleichgewichts zu erhalten, und die Versuche zeigen, dass diese Annahme in der Tat richtig ist. Anstatt den Reiz immer 3/45/4'' nach dem Signal wirken zu lassen, ließ ich die Pausen bis zu 2" dauern und erhielt so die Resultate, welche die folgende Tabelle enthält.

Tabelle IX.


 
B.
C.
R
V
R'
V'
R
V
R'
V'
27. II. 148 10 149 7 155 9 155 5
136 9 139 6 147 11 148 6
26. 139 9 139 6 143 12 142 6
156 10 154 6 157 11 158 7
4. IV. 146 16 145 10 162 12 159 8
M. 145 11 145 7 153 11 152 6

 
 
 

    Die Zahlen zeigen, dass die Aufmerksamkeit, d. h. die Zentra, welche in einen Zustand labilen Gleichgewichts versetzt sind, ungefähr l" lang in Spannung gehalten werden können, B.'s Zeit ist ein wenig kürzer als normal; das rührt wahrscheinlich daher, dass er seine Aufmerksamkeit mehr anspannte und trotz des größeren Intervalls die Zentra genauer im Zustand labilen Gleichgewichts hielt. Andrerseits ist C.'s Zeit ein wenig länger, da die Anspannung der Aufmerksamkeit seine Zeiten nicht verkürzte, aber die längeren Pausen das Maximum der Bereitschaft beeinträchtigten. In gleicher Weise wurden die Pausen zwischen Signal und Reiz von dem Ablesenden beliebig zwischen normal und 15" variiert. Derartige Versuche wurden sowohl mit Licht als mit Schall angestellt.

Tabelle X.


 
Licht
Schall
B.
C.
B.
C.
R
R'
R
R'
R
R'
R
R'
27. II. 200 198 170 168 184 173 174 169
28. II. 204 196 164 164 176 173 167 166
168 161 168 164 154 147
4. IV. 159 158 184 181 171 171 173 166
5. IV. 178 174 174 176 158 159 170 166
M. 182 177 173 172 171 168 168 163
M. V. 22 14 16 11 23 13 22 13

 

    Man sieht, dass die Zeiten bedeutend länger sind als die normalen; ebenso ist die mittlere Variation größer15). Die ersten Reihen von B. ergaben besonders lange Zeiten; später lernte er sich den Bedingungen besser anzupassen. Alle diese Versuche zeigen, dass bei C. die Reaktion wahrscheinlich mehr automatisch geschieht als bei B. Gegen meine Erwartung scheint die Reaktion auf Schall durch Ablenkung der Aufmerksamkeit mehr verlängert zu werden als die auf Licht, obwohl es doch weniger Anstrengung erfordert auf Schall zu reagieren (die Reaktion scheint vielmehr ganz von selbst zu erfolgen), und obwohl wir wissen, dass es leicht ist, nach taktmäßigen Schalleindrücken Bewegungen auszuführen.

    15) In zwei Fällen erhielt ich bei B.'s Reaktionen auf Schall bemerkenswerte Resultate. Ich ließ gegen das Ende der Reihen das Intervall zwischen Signal und Reiz regelmäßig und normal werden. B. merkte nicht, dass irgend eine Änderung im Verfahren eingetreten war, aber seine Reaktionszeit wurde nach den ersten zwei Versuchen um 40s kürzer. Die in Betracht kommenden Gehirnteile waren also, ohne dass er sich dessen bewusst wurde, in den gewöhnlichen höchsten Grad von labilem Gleichgewicht versetzt worden.
 
 

    Ich machte weitere Versuchsreihen, bei denen wie gewöhnlich »Jetzt!« gesagt und das Chronoskop in Gang versetzt, aber der Lichtreiz nur in der Hälfte der Fälle hervorgebracht wurde. Dabei leitete mich der Gedanke, dass die Versuchsperson ihre Gehirnzentra nicht in den höchsten Grad labilen Gleichgewichts versetzen könnte, weil sonst der Bewegungsimpuls auch in den Fällen abgesandt werden würde, wo kein Reiz hervorgebracht worden war. Die in der Tabelle gegebenen Mittel sind aus 13 resp. 10 Versuchen genommen, da nur bei der Hälfte der Versuche Zeiten gemessen wurden. Die hier hervorgebrachte Verzögerung ist verwandt mit der später zu betrachtenden Willenszeit.

Tabelle XI.


 
B.
C.
R
V
R’
V’
R
V
R’
V’
27. II. 153 18 147 10 174 22 165 8
148 10 148 6 166 18 160 8
28. 154 23 148 15 142 6 143 5
165 20 157 10 154 12 156 6
157 9 156 7 153 12 150 8
M. 155 16 151 10 158 14 155 7

 

    Aus allen diesen Versuchen erkennen wir, dass gewöhnliche Grade von Aufmerksamkeit auf die Länge der Reaktionszeit nur wenig Einfluss haben16)17). Wir finden weiter Gründe, welche für unsere Annahme sprechen, dass, längere Übung und annähernde Constanz der Zwischenzeit zwischen Vorbereitung und Reiz vorausgesetzt, Apperzeptions- und Willensprozesse in der Reaktionszeit nicht mehr enthalten sind. Es ist also nicht notwendig, den Reiz wahrzunehmen, damit das motorische Zentrum erregt werden kann, und der Willensakt geht in diesem Falle bereits vor sich, ehe der Reiz ankommt, und besteht darin, dass er die in Betracht kommenden Teile des Gehirns in Bereitschaft setzt.
 
 

    16) G. Stanley Hall (Mind. No. XXX) maß die Reaktionszeit zweier Personen in hypnotischem Zustande und fand, dass die eine längere, die andere kürzere Zeiten ergab als in normalem Zustande. Er nahm an, dass der Fall, in welchem die Zeiten kürzer waren, der typische wäre; da er weiter annimmt, »dass der beste Weg, die Reaktionszeit kleiner zu machen, in einer starken Anspannung der Aufmerksamkeit« bestehe, scheint er von der Ansicht auszugehen, als ob die kürzeren Zeiten, welche die Versuchsperson in hypnotischem Zustande lieferte, ein Beweis dafür wären, dass dieser Zustand auf größerer Anspannung der Aufmerksamkeit beruhe. Die Schlüsse, welche man aus den Versuchen ziehen sollte, sprechen aber gerade für das Gegenteil. Die Person lieferte in normalem Zustande außergewöhnlich lange Zeiten (338 s ); sie empfand also vielleicht erst den elektrischen Schlag und führte darauf die Bewegung durch einen willkürlichen Akt aus. Wenn sie hypnotisiert war, war ihre Intelligenz mehr oder weniger paralysiert und die (immer noch lange) Reaktion wurde mehr automatisch. Die Versuche mit dieser einen Person dienen also gerade dazu, die Annahme von Bain und Hammond zu unterstützen, dass im hypnotischen Zustande die Tätigkeit der Großhirnrinde aufgehoben sei, während Prof. Hall gerade sagt, dass sie diese Theorie »sicherlich nicht unterstützten«.

    17) Ich glaube, dass oft Unregelmäßigkeiten in den Apparaten auf Rechnung der Aufmerksamkeit gesetzt worden sind.