

POSTERIOR AFFRICATE IN MEE AND CONSONANT-VOWEL PLACE INTERACTIONS

Peter Staroverov

Sören E. Tebay

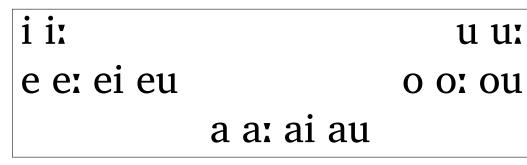
staroverov@wayne.edu

tebay@uni-leipzig.de

Annual Meeting on Phonology 2018

Overview

- Primary data on a laterally-released velar stop in Mee, Papuan
- Evidence that this consonant is /g/ phonologically
- Previously undocumented allophonic variation: [g $^{ t L}$] before front vowels \sim [G^B] before back vowels, supported in an acoustic study
- Potential historical stage in the development of uniform velar laterals
- Consonant-Vowel place interaction in major place (contra Ní Chiosáin & Padgett 1993)


Mee basics (iso ekg; a.k.a Ekari, Ekagi)

- Paniai Lakes Papuan language (Doble 1987, a.o.)
- System of tonal contrasts analyzed by Hyman & Kobepa (2013)
- Syllables: (C)V(V) (onsetless word-initial only)

Consonants:

•		
Labial	Coronal	Dorsal
рb	t d	k g
m	n	
W	\mathbf{j}	
	Labial p b m	Labial Coronal p b t d m n

Vowels and diphthongs:

The velar/uvular affricate: a rare sound

- Voiced closure + lateral/fricative release. New uvular allophone.
- Mee allophony: velar [g^L] before front vowels, and uvular [G^E] before back vowels. The latter allophone never reported before.
- g^Leig^Lei 'to dry in the sun' jug^Lei 'to crush' jag^Li: 'to fall'
- g^rarti 'ten' dag^ku 'room' eg⁸ou 'to pull'
- **Vowel reduction**: short /i e/ are over-short and highly lateralized after [g^L]
- g^Lĭdi: 'to take out'; g^Lĕmo: 'cool'; dag^Lĭ 'head'

Mee velar lateral corresponds to a stop /g/ phonologically

- Patterns as a stop in the consonant system (Doble 1987)
- Corresponds to a 'proper' stop [g/k] in a related language Moni (Tebay 2018)
- Always has a clearly identifiable closure

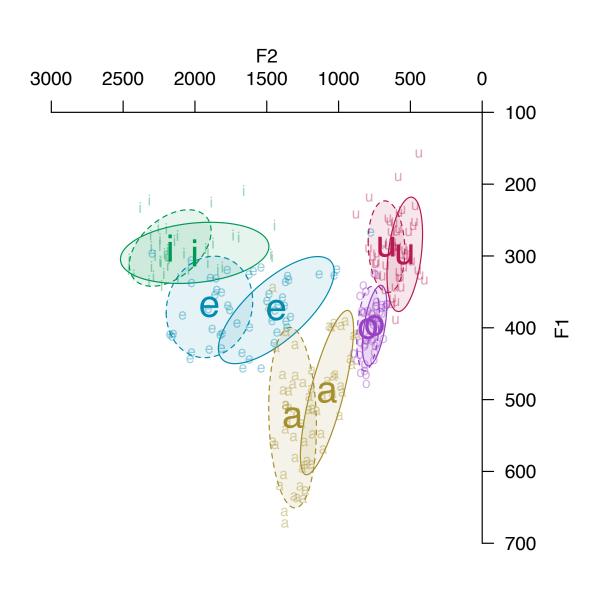
Some cross-linguistic parallels:

- Pre-stopped velar lateral in Hiw, Oceanic (François 2010)
- In Mid-Waghi it variably lacks the closure phase (Ladefoged et al. 1977)
- In general though, velar laterals are almost always pre-stopped in other languages (Blevins 1993; François 2010)
- [G^B] is a variant of [G], marginal in Xumi (Chirkova & Chen 2013)

Data and method

Data from two consultants, both men between 25 and 35 years old

- •S1: elicitaiton data and a controlled set of /g/ recordings
- •S2: only elicitation data


Although we will focus on the results from S1, the elicitations with S2 suggest the same pattern.

Controlled recordings:

- Bisyllabic or longer words, tone is not controlled for
- 158 tokens (52 words) for g_V[-ьк] and 154 tokens (45 words) for g_V[+ьк]
- All vowel contexts represented, except for i_u
- Randomly intersperced with fillers with 1-to-1 ratio. Carrier phrase.

Formant transitions in V_1gV_2

F1 and F2 transitions (at 9/10 of V₁ duration) into [g^L] (dotted) and [G^R] (solid). Ellipses show ± 1 s. d.

- V₁ transitions had a higher F2 before [g^L] than before [G^R], compatible with our description ($\beta = 220; SE =$ 60; p < 0.001). LME regression with V₁ quality and V₂ frontness as fixed effects; item and repetition number as random effects
- Significant interaction: V₂-frontness with V_1 being /e/ ($\beta = 246; SE =$ 87; p < 0.01), and marginal V_2 frontness with V_1 being /o/ (β = -175; SE = 90; p = 0.055). See the Figure.
- We don't yet have a full explanation for the special behavior of /e/ and /o/

Release quality

- We could separate the release from V_2 in about a third of the tokens: aperiodic signal or attenuated energy in higher frequencies
- Perceptually very distinct release for [g^L] vs. [G^R]
- Release periodicity annotated
- Release tends to be periodic for [g^L] but aperiodic for [G^B]
- Confound: V₂ qualities are different for [g^L] vs. [G^R], hence no direct acoustic comparison is possible

Release periodicity:

	LgrJ	[G ^B]	Tota
Aperiodic	6	23	29
Periodic	35	39	74
Total	41	62	103

Discussion

Our acoustic results are compatible with a categorical [g^L] \sim [G^R] allophony pattern, based on V₂ frontness

- Release quality is different for two /g/ allophones
- V₁ transitions are different, suggesting a distinction in constriction location

C-V coarticulation: potential history for [g^L]?

Velar laterals from stops: Tebay (2018): $*g > g^L$ for Paniai Lakes

• Hypothetical two-step development, for Paniai Lakes languages:

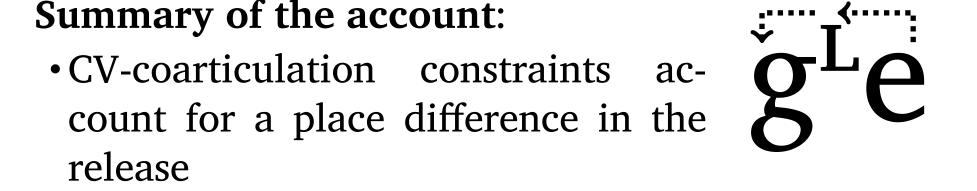
Velar laterals from rhotics: François (2010): *r > ^GL in Hiw (Oceanic)

- François suggests *r > R as a first step in this development
- C-V coarticulation could contribute to reinterpreting *R as [G^B] and to the development of an allophonic pattern, akin to that in Mee
- This hypothesis relies on phonetic similarity and phonological affinity between uvular fricatives and rhotics
- Later leveling towards just the velar variant (as above, for Paniai Lakes)

Summary: Mee could represent a stage in the emergence of velar laterals.

- If reinterpretation of C-V transitions is a common source of velar laterals, this might explain why these sounds are almost always pre-stopped
- This hypothesis remains to be further investigated

Implications: CV interactions


CV coarticulation in Mee extends to both the closure and the release, thus targeting major place of the dorsal/uvular affricate.

• This goes against the claim that C-V place interactions only affect secondary place (Ní Chiosáin & Padgett 1993)


Assumptions:

- Complex segmens like /g/ in Mee have two distinct phases
- Uvular laterals do not exist, hence the release changes to fricated, rather than lateral

Summary of the account:

- Additional pressure: closure and release must have the same place.
- Overall effect: major place of the whole consonant affected