Linearizing Inflectional Exponents by Movement: Phonological Reflexes

Daniel Gleim, Gereon Müller, Mariia Privizentseva & Sören Tebay

Institut für Linguistik
Universität Leipzig

Linearising Constituents Across Domains
October 15-16, 2020
Bled Institute
Main Claims

• **Exponent movement in harmonic serialism:**
 Harmonic serialism is a strictly derivational version of optimality theory (McCarthy (2016), Heck & Müller (2007)). The approach to inflectional morphology based on harmonic serialism that is developed Müller (2020) systematically predicts movement of inflectional exponents: All inflectional exponents must be merged at the current root (because of the Strict Cycle Condition), and this may imply temporary violations of linearization constraints that are subsequently fixed by movement of the exponent.

• **Reflexes of exponent movement:**
 Seemingly non-local phonological operations triggered by inflectional exponents provide evidence for movement in morphology, in the same way as reflexes of phrasal movement in the syntax.

• **Harmonic serialism and phonological reflexes of exponent movement:**
 Unlike virtually all existing approaches to inflectional morphology, the model in Müller (2020) predicts the existence of phonological reflexes of movement of inflectional exponents without further ado; it is thus supported by these reflexes.
Background: Reflexes of Movement

Observation:
Reflexes of syntactic movement are ubiquitous:

- **syntactic reflexes**: reconstruction of binding, theta-role assignment, etc.
- **semantic reflexes**: reconstruction to intermediate positions (Fox (2000), Nissenbaum (2000))
- **morphological reflexes**: allomorph selection (McCloskey (1979), Urk (2015), Georgi (2017))
- **phonological reflexes**: Clements et al. (1983), Korsah & Murphy (2019) on tone
Harmonic Serialism

Harmonic serialism (McCarthy (2010; 2016), Heck & Müller (2013; 2016)):

a. Given some input I_i, the candidate set $CS_i = \{O_{i1}, O_{i2}, \ldots O_{in}\}$ is generated by applying at most one operation to I_i.

b. The output O_{ij} with the best constraint profile is selected as optimal.

c. O_{ij} forms the input I_{ij} for the next generation step producing a new candidate set $CS_j = \{O_{ij1}, O_{ij2}, \ldots O_{ijn}\}$.

d. The output O_{ijk} with the best constraint profile is selected as optimal.

e. Candidate set generation stops (i.e., the derivation converges) when the output of an optimization procedure is identical to the input (i.e., when the constraint profile cannot be improved anymore).
Assumptions (Müller (2020)):

- Inflectional morphology is lexical, not inferential. (See Halle & Marantz (1993), Trommer (2011) vs. Anderson (1992), Stump (2001).)
- Inflectional morphology is pre-syntactic, not post-syntactic, parallel, or syntax-internal. (The Strict Cycle Condition blocks operations from applying exclusively to embedded domains; Chomsky (1973; 1995; 2008): Post-syntactic morphological exponence by Merge (or by substitution transformation) is inherently counter-cyclic.)
How the Approach Works

(2) a. For each basic stem A in the lexicon, there is a language-specific set of features that it can be characterized by (see Stump’s (2001) concept of a set of well-formed morpho-syntactic properties).

b. A stem A is taken from the lexicon with its inherent features (e.g., inflection class and gender features). These features are always fully specified.

c. Non-inherent features are added in the numeration. These features are also always fully specified; they provide the context for underspecified inflection markers.

d. Triggered by a high-ranked Merge Condition (MC) for a structure-building feature [●α●] (MC(α)), inflectional exponents B₁,α, B₂,α ... Bₙ,α are in competition; one or more of them (disjunctive blocking vs. extended exponence) is merged with A. (All of an inflectional exponent’s features are inherent; but they are often underspecified.)

e. If A has another structure-building feature feature [●β●] that is subject to a MC for this feature (MC(β)), Merge next applies to one or more competing exponents C₁,β, C₂,β, ... Cₙ,β for β (MAᵦ), attaching the new exponent(s) at the left or right edge of the current stem (i.e., the root), because of the Strict Cycle Condition. And so on.

f. The ranking of MCs is determined by f-seq (Starke (2001)).

g. In addition to MCs, there are alignment constraints determining the order of exponents (Trommer (2001; 2008), Ryan (2010)): α⇒R, L⇐α, β⇒R, L⇐β, ...

h. Furthermore, there are IDENT and MAX constraints for features, from which Subset Principle (Compatibility and Specificity) effects are derived.

i. The fully inflected word composed of stem and inflectional exponents is then transferred to the syntactic component. The syntactic component cannot see the internal structure of the word generated in the morphological component; but it can access all the morpho-syntactic features associated with the stem, and carry out Agree operations with them (see Chomsky (2001), Bruening (2017)).
Abstract Patterns

In harmonic serialism, morphological movement can arise under iterative optimization when the ranking of two MCs is parallel to the ranking of the respective alignment constraints (and the MCs outrank the alignment constraints). No such movement can occur in standard OT.

(3) a. Initial input:
A stem A with two structure-building features [\(\bullet \alpha \bullet\), [\(\bullet \beta \bullet\)]; [\(\alpha \) B] and [\(\beta \) C] are the exponents that best satisfy faithfulness constraints (compatibility, specificity).

b. Constraints:
MC_{\alpha} \gg MC_{\beta}; \alpha \Rightarrow R, \beta \Rightarrow R; L \Leftarrow A.

(4) Rankings (i):

a. MC(\alpha) \gg MC(\beta) \gg L \Leftarrow A \gg \beta \Rightarrow R \gg \alpha \Rightarrow R

b. MC(\alpha) \gg MC(\beta) \gg L \Leftarrow A \gg \alpha \Rightarrow R \gg \beta \Rightarrow R

(5) a. \[A [A A B_{\alpha}] C_{\beta} \]

b. \[A [A A] C_{\beta}] B_{\alpha} \]

(6) Rankings (ii):

a. MC(\alpha) \gg MC(\beta) \gg A \Rightarrow R \gg L \Leftarrow \beta \gg L \Leftarrow \alpha

b. MC(\alpha) \gg MC(\beta) \gg A \Rightarrow R \gg L \Leftarrow \alpha \gg L \Leftarrow \beta

(7) a. \[A C_{\beta} [A B_{\alpha} A] \]

b. \[A B_{\alpha} [A C_{\beta} [A A]] \]
German Verb Inflection 1

(8) kauf-te-st ← kauf (‘buy’), [2], [SG], [PAST]

(9) Harmonic serialism, step 1: Merge of /te/ [PAST]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l1: [V kauf]: [●T●], [●Agr●], [2], [SG], [PAST], {[T /te/ ↔ [PAST]], ... }, {[Agr /st/ ↔ [2.SG]], ... }</td>
<td>MC_T</td>
<td>MC_Agr</td>
<td>L←V</td>
<td>Agr⇒R</td>
<td>T⇒R</td>
</tr>
<tr>
<td>O11: [V kauf]: [●T●], [●Agr●]</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O12: [V kauf-te]: [●Agr●]</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O13: [V kauf-st]: [●T●]</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O14: [V te-kauf]: [●Agr●]</td>
<td></td>
<td>*</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>O15: [V st-kauf]: [●T●]</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(10) Harmonic serialism, step 2: Merge of /st/ [2.SG]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l12: [V kauf-te]: [●Agr●], [2], [SG], [PAST], { ... }, {[Agr /st/ ↔ [2.SG]], ... }</td>
<td>MC_T</td>
<td>MC_Agr</td>
<td>L←V</td>
<td>Agr⇒R</td>
<td>T⇒R</td>
</tr>
<tr>
<td>O121: [V kauf-te]: [●Agr●]</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O122: [V kauf-te]-st</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>O123: [V st-[V kauf-te]]</td>
<td>*!</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
German Verb Inflection 2

(11) Harmonic serialism, step 3: Convergence

\[I_{122} : [V[V \text{kauf-te}]-st]\]
\[[2], [SG], [PAST], \{ ... \}, \{ ... \} \]
\[\leftarrow MC_T \rightarrow MC_{Agr} \leftarrow L \leftrightarrow V \rightarrow Agr \Rightarrow R \Rightarrow T \rightarrow R \]

\[O_{1221} : [V[V \text{kauf-te}]-st] \]
\[* \]
\[O_{1222} : [V st-[V \text{kauf-te}]] \]
\[*! \quad ** \]
\[O_{1223} : [V te-[V[V \text{kauf}]-st]] \]
\[*! \quad ** \]
\[O_{1224} : [V[V[V \text{kauf}]-st]-te]] \]
\[*! \]

(12) Derivation in harmonic serialism:
\[[V \text{kauf}] \rightarrow [V[V \text{kauf}]-te] \rightarrow [V[V[V \text{kauf}]-te]-st] \rightarrow [V[V[V \text{kauf}]-te]-st] \]

Conclusion:
No movement of exponents.
Berber Verb Inflection 1

(13) \textbf{ad-y-seg} (‘FUT-3.MASC.SG-buy’; ‘He will buy.’) ← seg, [3], [SG], [MASC], [FUT]

Assumption (Ouhalla (1991)): T and Agr exponents are prefixes; the surface order is counter-f-seq. (See Noyer (1992), Frampton (2002) for complications: suffixes.)

(14) Harmonic serialism, step 1: Merge of /ad/ [FUT]:

O_{11}: [v seg]: [○T], [○Agr]	*!	*	
O_{12}: [v seg-y]: [○T]	*!	*	*
O_{13}: [v seg-ad]: [○Agr]	*	*!	*
O_{14}: [v y-seg]: [○T]	*!		
O_{15}: [v ad-seg]: [○Agr]	*		

(15) Harmonic serialism, step 2: Merge of /y/ [3.SG.MASC]

O_{151}: [v ad-seg]: [○Agr]	*!	
O_{152}: [v [v ad-seg]-y]	*!	**
O_{153}: [v y-[v ad-seg]]	*	
Berber Verb Inflection 2

Note:
There is no competing output that merges /y/ between /ad/ and /seg/, and thereby circumvents a violation of higher-ranked L⇐T in (15) (by violating lower-ranked L⇐Agr). Such a counter-cyclic merge operation would violate the Strict Cycle Condition.

(16) Harmonic serialism, step 3: Movement of /ad/ [FUT]

<table>
<thead>
<tr>
<th>I_{153} : [V y-[V ad-seg]], [3], [SG], [MASC], [FUT], { ... }, { ... }</th>
<th>MC_T</th>
<th>MC_{Agr}</th>
<th>V⇒R</th>
<th>L⇐T</th>
<th>L⇐Agr</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{1531} : [V y-[V ad-seg]]</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>O_{1532} : [V ad-[V y-[V seg]]]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>O_{1533} : [V [V y-[V ad-seg]]-y]</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>O_{1534} : [V [V y-[V seg]]-ad]</td>
<td></td>
<td></td>
<td>*!</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

(17) Derivation in harmonic serialism:

[_V_ seg _] \rightarrow [_V_ ad [_V_ seg _]] \rightarrow [_V_ y [_V_ ad [_V_ seg _]]] \rightarrow [_V_ ad [_V_ y [_V_ seg _]]]

Conclusion:
There is movement of inflectional exponents.
Note:
The same ranking of these constraints predicts direct surface generation (i.e., no movement) in standard parallel optimality theory.

(18) Berber verb inflection in standard parallel optimality theory:

<table>
<thead>
<tr>
<th></th>
<th>MC_T</th>
<th>MC_Agr</th>
<th>V⇒R</th>
<th>L←T</th>
<th>L←Agr</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1: [v] seg: [●T●], [●Agr●], [3], [SG], [MASC], [FUT], {[T /ad/ ↔ [FUT]], ... }, {{[Agr /y/ ↔ [3.SG.MASC]], ... }</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_11: [v] seg: [●T●], [●Agr●]</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_12: [v] seg-y: [●T●]</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_13: [v] seg-ad: [●Agr●]</td>
<td></td>
<td>*</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_14: [v] y-seg: [●T●]</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_15: [v] ad-seg: [●Agr●]</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
| **O_16**: [v] ad-[v y-seg] | | | | | *
| **O_17**: [v] y-[v ad-seg] | | | | | *
| **O_18**: [v] y-seg-ad | | | | | *
| **O_19**: [v] ad-seg-y | | | | | *
| **O_20**: [v] seg-ad-y | | | | | *
| **O_21**: [v] seg-y-ad | | | | | *
Claim:

- Phonological operations apply to the output of a morphological cycle, and there are two morphological cycles:
 1. The first morphological cycle is finished when all MC-triggered Merge operations have applied (i.e., the word is potentially complete for the first time).
 2. The second morphological cycle is finished when the derivation has converged on a final output.

- The characterization of the first morphological cycle as a “potentially complete” word where all structure-building features have been discharged bears an obvious resemblance to Chomsky’s (2000) characterization of phases (cf. “a verb phrase in which all θ-roles are assigned”); an analogous reasoning could be provided for the second morphological cycle (“full clause”). See Marvin (2002), Embick (2010).
Barwar Aramaic De-spirantization

In Barwar Aramaic (Iraq, Khan (2008)), a regular local phonological process turns dental fricatives into stops, if they precede coronal sonorants.

(19) De-spirantization
\[\ddot{\varepsilon}, \dot{\theta} \rightarrow \text{d,t} /_ l,n. \]

(20) a. \[[\text{jadli}] \]
\[/j\langle a\rangle \ddot{\varepsilon}l-i/ \]
lay.eggs\langle PRS\rangle-PL
‘They lay eggs.’

b. \[[\text{\ddot{d}illa}] \]
\[/j\ddot{\varepsilon}\langle i\rangle l-la/ \]
lay.eggs\langle PAST\rangle-3SG.F.SUBJ
‘She laid eggs.’
Overapplication 1

De-spirantization is expectedly triggered if l-initial agreement morphology attaches to ʔ/ʕ final stems.

(21) [tʰridle]
 /tʰr⟨i⟩ʔ-le/
 chase.away⟨PAST⟩-3SG.SBJ
 ‘He chased away.’

However, it (optionally) overapplies if the REMOTE marker /-wa/ intervenes.

(22) [tʰridwale]∼[tʰriʔwale]
 /tʰr⟨i⟩ʔ-wa-le/
 chase.away⟨PAST⟩-REMOTE-3SG.SBJ
 ‘He had chased away.’
Neither the phoneme [w] nor the affix /-wa/ trigger de-spirantization by themselves.

(23) a. \[ka\theta wa\]
\[k\langle a\rangle\theta w-a/\]
write\langle PRS\rangle-3SG.F
‘She writes.’

b. \[?i\theta wa\]
\[/?i\theta-wa/\]
be.there-REMOTE
‘There was.’
Analysis

Summary:

• The agreement affix merges first, followed by /-wa/.
• In a first phonological cycle de-spirantization applies locally.
• Agreement moves across /-wa/ to the right edge, making de-spirantization opaque.

(24) a. t̄ȳrid-le-wa
 b. t̄ȳrid-le-wa
 c. t̄ȳrid- -wa-le
• \(MC_{Agr} \), which triggers the insertion of agreement morphology, outranks \(MC_{Adv:T} \) which is responsible for the merging of /-wa/.

• Therefore, /-le/ is merged first

(25) Harmonic serialism, step 1: Merge of /le/ [3..SG.MASC]

<table>
<thead>
<tr>
<th>I_1: ([V \ t^y r⟨i⟩ dù]: [\bullet Agr \bullet], [\bullet Adv:T \bullet], [3], [SG], [MASC] [PAST], {{[Agr /le/ \leftrightarrow [3..SG.MASC]], ... }, {[Adv:T /wa/ \leftrightarrow [REMOTE]], ... }</th>
<th>MC_{Agr}</th>
<th>MC_{Adv:T}</th>
<th>L \leftrightarrow V</th>
<th>Agr \Rightarrow R</th>
<th>Adv:T \Rightarrow R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{11}: ([V \ t^y r⟨i⟩ dù]: [\bullet Agr \bullet], [\bullet Adv:T \bullet])</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{12}: ([V [V \ t^y r⟨i⟩ dù]-le]: [\bullet Adv:T \bullet])</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{13}: ([V [V \ t^y r⟨i⟩ dù]-wa]: [\bullet Agr \bullet])</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| O_{14}: \([V le-[V \ t^y r⟨i⟩ dù]]: [\bullet Adv:T \bullet] \) | | | *! | | *
| O_{15}: \([V wa-[V \ t^y r⟨i⟩ dù]]: [\bullet Agr \bullet] \) | *! | * | | |
First morphological cycle 2

- At the next step, /-wa/ is merged.
- this necessarily induces a violation of Agr⇒R because
 - interfixing /-wa/ between the root and /-le/ is impossible due to strict cyclicity.
 - suffixing /-wa/ and moving /-le/ across it would involve two operations.
 - prefixing /-wa/ to the stem violates higher ranked L⇒V

(26) Harmonic serialism, step 2: Merge of /wa/ [REMOTE]

<table>
<thead>
<tr>
<th></th>
<th>MC_{Agr}</th>
<th>MC_{Adv:T}</th>
<th>L⇒V</th>
<th>Agr⇒R</th>
<th>Adv:T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{121}: [V [V t\text{yr}(i)\delta]-le]: [●Adv:T●]</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{122}: [V [V t\text{yr}(i)\delta]-le]-wa</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{123}: [V wa-[V [V t\text{yr}(i)\delta]-le]]</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>
Phonological cycle

- All merge conditions are satisfied, so that the first cycle of phonological computation is triggered.
- The exact nature of the phonological computation is not crucial – It can be rules, globally optimising constraints, or HS as well.
- Morphological brackets must not be erased.

(27) $[[t^y r\langle i \rangle d \text{-le}}\text{-wa}] \rightarrow [[[t^y r\langle i \rangle d \text{-le}}\text{-wa}]]$

- The output is shipped back to morphology.
Second Morphological cycle

In the next morphological cycle, the lower ranked linearization constraints can induce movement.

- Agr⇒R outranks Adv:T⇒R.
- Movement of /-le/ across /-wa/ thus improves the violation profile.

(28) Harmonic serialism, step 3: Movement of /le/ [3..SG.MASC]

<table>
<thead>
<tr>
<th></th>
<th>MC_Agr</th>
<th>MC_Adv:T</th>
<th>L←V</th>
<th>Agr⇒R</th>
<th>Adv:T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁₂₂₁: [V [V t^y r⟨i⟩d]-le]-wa]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₁₂₂₂: [V [V [V t^y r⟨i⟩d]] -wa]-le]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>O₁₂₂₃: [V wa-[V [V t^y r⟨i⟩d]]-le]]</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>O₁₂₂₄: [V le-[V [V t^y r⟨i⟩d]] -wa]</td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

- The next step is convergence, the morphological computation is finished and a new cycle of phonology is induced.
- Morphological movement counterbleeds de-spirantization.
Prediction

There should be no overapplication if the affix intervening between subject agreement and the root is merged before subject agreement, i.e., is below it on the f-seq. This is indeed the case — object agreement transparently blocks de-spirantization.

(29) \[\text{[t}\text{y}^{\text{i}}\text{ri}^{\text{d}a}^{\text{le}}] \ast [t\text{y}^{\text{i}}\text{rid}a^{\text{le}}] \]

/\text{t}^{\text{i}}\text{r}^{\text{p}}\langle\text{i}^{\text{p}}\rangle^{\text{a}}\text{-a-le/}

\text{chase.away(PAST)-F.OBJ-3SG.M.SBJ}

‘He chased her away.’
In Sanskrit, the ruki-rule applies non-locally across the tense prefix /a-/ (Kiparsky 1982).

(30) **Ruki-rule**
\[s \rightarrow \text{ṣ}/ \{r,u,k,i\} __ \]

(31) a. siṅc- ‘sprinkle’
b. abhi-ṣiṅc- ‘anoint’, ‘pour on’
c. abhy-a-ṣiṅc-at ‘anointed’, ‘poured on’
\text{(compound verb)}
\text{(IMPERFECTIVE, 3SG)}

(32) a. a-abhi-siṅc
b. a-abhi-ṣiṅc
c. abhi-a-ṣiṅc
\text{abhi merges first}
\text{ruki-rule}
\text{abhi moves across a}
Lithuanian accent shift

In Lithuanian, Saussurean accent shift applies across an unaccented mora, iff it belongs to a theme vowel (Kushnir 2018).

(33) **Saussurean Accent Shift**
Whenever two underlying accents coincide on two subsequent moras word-finally, the surface accent is aligned with the right edge of the word.

(34) a. $k^\mu \mu i^\mu m + é^\mu ñ^\mu \to káim-e$
 (No accent shift)

b. $r^\mu a^\mu ň^\mu k + á^\mu ø^\mu \to ranká$
 (transparent accent shift)

c. $žín + a^\mu ñ^\mu + ú ñ^\mu \to žinaú$
 (Opaque accent shift)

(35) a. $žín-ú$
 only agreement merges

b. $žin-ú$
 Accent shift

c. $žín-ú-a$
 Theme vowel merges

d. $žin-_a-a-ú$
 Agr moves across theme vowel
Kazakh vowel harmony

In Kazakh, the invariant \ [+front\] affix /-men/ does not block root-controlled vowel harmony from targeting the question particle /-BA/ across itself (Bowman & Lokshin 2014). The vowel /e/ is not generally transparent.

(36) a. bul jàl nan-men-ba
 bul jàl nan-men-bA
 this old.man bread-INSTR-Q
 ‘Is this an old man with some bread?’

 b. bul jàl bøbek-men-be
 bul jàl bøbek-men-bA
 this old.man baby-INSTR-Q
 ‘Is this an old man with a baby?’

(37) a. nan-BA-men
 Q merges before INSTR
 Vowel harmony

 b. nan-ba-men

 c. nan- -men-ba
 Q moves across INSTR

Gleim, Müller, Privizentseva, Tebay Linearizing Inflectional Exponents by Movement October 15-16, 2020 25 / 36
Epenthesis in Quechua

Overview: In Bolivian and Huallaga Quechua, epenthesis of CV applies even though morphological exponents that would trigger it are separated by other exponents (see Bills et al. (1969), Weber (1989), and Myler (2013)).

(38) a. *Affix₁-Affix₃ is ruled out and epenthesis applies Affix₁-CV-Affix₃
b. Affix₁-CV-Affix₂-Affix₃
c. Affix₁-Affix₂
Conditions on epenthesis

Ni is inserted to prevent creation of super-heavy syllables, i.e., syllables which nucleus and coda has three or more moras (Myler (2013, 191)). $V/C - \mu$; $V: - \mu\mu$.

(39) a. Allowed: CV CVC CV: b. Prohibited: CV: C(C*) CVCC(C*)

(40) Huallaga Quechua, -C

a. uma-n b. mayur-ni-n c. papa:-ni-n
head-3.POSS older-NI-3.POSS father-NI-3.POSS
‘his head’ ‘my older (sibling)’ ‘his father’

Note: /ll/ stands for a lamino-palatal lateral, /lla/ ‘just’ does not trigger *ni*-insertion:

(41) chay-yaq-lla
that-LIM-just
‘just to there’
Overapplication in Quechua

Ni can be also present when two affixes that create environment for its insertion are separated by another exponent _lla_ ‘just’.

(42) Bolivian Quechua

a. *wawa-s-y
 child-PL-1POSS
 ‘my children’

b. wawa-s-ni-y
 child-PL-NI-1POSS

c. *wawa-s-lla-y
 child-PL-just-1.POSS
 ‘just my children’

d. wawa-s-ni-lla-y
 child-PL-NI-just-1.POSS

(43) Huallaga Quechua

a. *kikish-yki
 armpit-2.POSS
 ‘your armpit’

b. kikish-ni-ki
 armpit-NI-2.POSS

c. kikish-ni-lla-yki
 armpit-NI-just-2.POSS
 ‘just your armpit’

d. kikish-lla-yki
 armpit-just-2.POSS

Note 1: /yki/ used starts with two consonants, but the glide is deleted after /i/.

Note 2: Complex syllable onsets are also ruled out (i.e., *CCV).
Analysis of *ni*-insertion

Claim: *Ni*-insertion always applies locally when exponents creating a super-heavy syllable are adjacent to each other. The configuration is later destroyed by movement of the possessive affix.

Constraints and their ranking:

- [Poss] is part of the f-seq of nominal categories, while optional exponents like *lla* ‘just’ are not. \(\rightsquigarrow \text{MC}_{\text{Poss}} \gg \text{MC}_{\text{Lim(itation)}} \)
- Alignment constraints are ranked in the same way: \(\rightsquigarrow \text{Poss} \Rightarrow \text{R} \gg \text{Lim} \Rightarrow \text{R} \)
- L←N ensures that exponents are suffixal, it outranks other alignment constraints.
Derivation of *ni*-epenthesis, Bolivian Quechua 1

(44) Harmonic serialism, step 1: Merge of */y/ [1.POSS]

<table>
<thead>
<tr>
<th>[N wawa-s]: [bullet Poss•], [bullet Lim•], [PL], [1.POSS], {[Poss */y/ ↔ [1.POSS]], ... }, {[Lim /lla/ ↔ [JUST]], ... }</th>
<th>MC_{Poss}</th>
<th>MC_{Lim}</th>
<th>L ↔ N</th>
<th>Poss ⇒ R</th>
<th>Lim ⇒ R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{11}: [N wawa-s]: [bullet Poss•], [bullet Lim•]</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{12}: [N [N wawa-s]-y]: [bullet Lim•]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{13}: [N [N wawa-s]-lla]: [bullet Poss•]</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{14}: [N y-[N wawa-s]]: [bullet Lim•]</td>
<td>*</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(45) Harmonic serialism, step 2: Merge of */lla/ [LIM]

<table>
<thead>
<tr>
<th>[N [N wawa-s]-y]: [bullet Lim•], [PL], [1.POSS], { ... }, {[Lim /lla/ ↔ [JUST]], ... }</th>
<th>MC_{Poss}</th>
<th>MC_{Lim}</th>
<th>L ↔ N</th>
<th>Poss ⇒ R</th>
<th>Lim ⇒ R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{121}: [N [N wawa-s]-y]: [bullet Lim•]</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{122}: [N [N [N wawa-s]-y]-lla]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{123}: [N lla-[N [N wawa-s]-y]]</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At this point, all MCs are satisfied and the first morphological cycle is completed!
Derivation of *ni*-epenthesis, Bolivian Quechua 2

The output of the first morphological cycle \([N [N [N wawa-s]-y]-lla]\) is subject to phonological operations.

(46) *Ni* breaks a super-heavy syllable

\[\text{wawa-s-y-lla} \rightarrow \text{wawa-s-ni-y-lla}\]

After this, the morphological derivation continues:

(47) Harmonic serialism, step 3: Movement of /y/ [1.POSS]

\[
\begin{array}{l|c|c|c|c|c}
| & MC_{Poss} & MC_{Lim} & L\leftarrow N & Poss\Rightarrow R & \text{Lim}\Rightarrow R \\
\hline
O_{1221}: [N [N [N wawa-s]-ni-y]-lla] & & & *! & & \\
O_{1222}: [N [N [N wawa-s]-ni-]-lla]-y & & & * & & \\
O_{1223}: [N lla- [N [N wawa-s]-ni-]-y]] & & & *! & & \\
\end{array}
\]

Summary: Seemingly non-local epenthesis is analyzed as strictly local operation followed by movement of the possessive exponent.
Alternative approaches 1

Non-local phonology: Agreement by Correspondence (see Hansson (2001), Rose & Walker (2004), Rhodes (2012))

Summary:

- Non-local processes are derived by establishing correspondence between the undergoing segments and forcing them to agree in some feature values.
- The (possibly linearly intervening) segment that neither undergoes nor blocks the process stays outside of the correspondence class due to a special diacritic (see Bowman & Lokshin (2014) on non-local vowel harmony in Kazakh).

Discussion:

- It’s not immediately clear whether the approach can be applied to epenthesis or accent shift.
- Modularity is weakened or even absent: Phonological processes access a diacritic without any phonological content.
- Non-local phonology is assumed as a default.
Alternative approaches 2

Counter-Cyclic Movement in Morphology and Interfixation

Summary:
- Phonology applies locally; an intervening segment is inserted later.

Discussion:
- Lowering (Myler (2013)): Under standard assumptions (see Embick & Noyer (2001)), it applies before linearization and vocabulary insertion, i.e., morphemes in their non-lowered order have no phonological features, so that no phonological interaction between them is possible.
- Local Dislocation:
 - There is no well-defined trigger for dislocating exponents.
 - Assumptions needed to derive non-local processes are incompatible with previously established applications of LD; see the positioning of reflexive *si* in Lithuanian (Embick & Noyer (2001; 2007), Embick (2007)).
Discussion and conclusions

Alternative approaches 3

Novel algorithm of vocabulary insertion (Myler (2017))

Summary:
- Relevant configurations exhibit counter-scopal morpheme order and are derived by movement of a syntactic object into the specifier of a higher head.
- Vocabulary insertion counts depth of embedding so that a specifier of a given head receives phonological features before the head itself. This allows processes between the specifier and the complement to apply locally.

Discussion:
- The approach allows for non-local phonological processes in configurations that are not derived by movement.
- Syntactic movement has to apply without a clear trigger.
Alternative approaches 4

Base-derivative faithfulness (Benua (1997), Kenstowicz (2002), Albright (2002))

Summary:
- A form with local application of a phonological process is the base for the derivation of the form containing the intervening affix. Faithfulness to the base is ranked high so that processes applies without a phonological context.

Discussion:
- There is no justification for choosing the required form as a base.
- Unless forms of a single word have distinct bases (*pace* Albright (2002)), phonological processes are wrongly predicted to apply across any intervener.

Stratal OT with constraint re-ranking

Summary:
- Affixes are adjacent and phonology applies locally at an earlier stratum. Order is changed at a later stratum, while the phonological effects are preserved.

Discussion:
- To the best of our knowledge, such an analysis was not yet proposed.
- The approach is essentially very similar to the current one in having two morphological cycles interleaved with phonological processes, but it additionally involves re-ranking of constraints.
Conclusions

1. **Strictly local phonological processes apply seemingly non-locally across an intervening exponent.** The data come from:
 - De-spirantization in Barwar Aramaic;
 - *ruki* rule application in Sanskrit;
 - Saussurean accent shift in Lithuanian;
 - Vowel harmony in Kazakh;
 - Syllable epenthesis in Quechua;

2. **We argue that these patterns are best analyzed as phonological reflexes of movement in morphology.**

3. **In harmonic serialism, morphological movement arises when the ranking of two MCs is parallel to the ranking of the respective alignment constraints (and the MCs outrank the alignment constraints).**

4. **Phonological operations apply to the output of the first morphological cycle that is completed when all MC-triggered Merge operations have applied.**
References

Rhodes, Russell (2012): Vowel Harmony as Agreement by Correspondence, UC Berkeley Phonology Lab Annual Report 8.

References

