Parallel Interaction between Infixation and Root Domain Constraints

Sören E. Tebay (U Leipzig) tebay@uni-leipzig.de

OCP20

January 27th, 2023

Main Claim

- There is an empirical gap in the interaction between infixation and root domain constraints.
- ▶ Root domain constraints are immune to bleeding by infixation.
- Serial approaches to phonology predict empirically unattested pattern.
- ► A parallel account based on prosodic domains is naturally restricted by a fixed ranking of OT-constraints.

Infixation & Root Domain Constraints

Infixation & Root Domain Constraints

- Phonological Root domain constraints (RDCs) are phonological generalizations that hold over roots (Albright, 2004).
- ▶ Infixation can split up root domains leading to discontiguous roots (Yu, 2007), cf. (1).
- ► How do these building blocks interact?
- (1) Infixation: $[Root]_{root\ domain} + Infix \rightarrow Ro\langle infix\rangle ot$
- (2) fan(fucking)tastic (McCarthy, 1982)

A hypothetical language L

- ▶ In the hypothetical language L, an OCP(C)-like root domain constraint forbids roots from containing syllable adjacent identical consonants, repaired by dissimilation, cf. (3).
- Additionally, L features an infix (it) that attaches after the initial consonant, cf. (4).

```
(3) RDC in L
siza *sisa
goko *gogo
tedu *tetu
tudi *tuti
(4) Infixation in L
```

```
(4) Infixation in L

sida s\langle \mathbf{it} \rangleida

goko g\langle \mathbf{it} \rangleoko

tedu /t \langle \mathbf{it} \rangleetu/ \rightarrow [???]

tudi /t \langle \mathbf{it} \rangleuti/ \rightarrow [???]
```

Questions

- What happens if an infix attaches to a root that already containts a /t/?
- ► Is the infix affected by the RDC?
- ▶ Is the non-contiguous root still affected by the RDC?

Aside: Dissimilation

- ► In regular dissimilation patterns, repairs often apply to the middle segment between two other segments.
- ► This applies for tone in Shona (Atlantic-Congo, Zimbabwe), if three high tones are adjacent, the middle one is deleted (Myers, 2004).
- (5) Tone Dissimilation in Shona /bángá gúrú/→[bángà gúrú] knife big

Three possible outcomes

(6)L1: Infix is ignored. tedu t⟨it⟩e**d**u tudi t(it)u**d**i (7)L2: infix & root undergo RDC tedu t⟨i**s**⟩e**d**u t⟨i**s**⟩u**d**i tudi

L3: No RDC for ro()ot (8)t⟨i**s**⟩etu tedu

t(is)uti tudi

Ro (Infix) ot

Ro (Infix) ot

Ro(Infix)ot

Typological Survey: No L3!

Typological Survey: No L3!

- ▶ A typological study of 55 patterns in 32 languages from 9 families with RDCs and infixation shows **no L3 languages**, but 12 L1 and 20 L2 patterns, cf. (7), based on Yu (2004); Mielke (2005); Zuraw & Lu (2009).
- ▶ Infixation interacts with OCP/dissimilation (Hebrew, Muna), maximality constraints/deletion (Hunzib, Nakh-Dagestanian), and syllable structure (Semelai, Austroasiatic; Yeri, Nuclear Torricelli).

(9) Typological Results

.,,,,,	1061cai i tesaits	
		# of lgs.
L1	Infix is ignored	12
L2	RDC for Infix & $ro\langle\rangle$ ot	20
L3	No RDC for $ro\langle\rangle$ ot	0
	No interaction	23
	Total	55

Genealogical Distribution

▶ L2 mainly occurs in Austronesian languages, wheras L1 is more widely distributed, cf. (8).

(10) Genealogical Distribution

top-level family	L1	L2	None	Total
Austronesian	1	19	5	25
Afro-Asiatic	4	1	5	10
Nakh-Dagestanian	1	0	0	1
Sino-Tibetan	2	0	0	2
Austroasiatic	2	0	2	4
Nuclear Torricelli	2	0	0	2
Other	0	0	11	11
Total	12	20	23	55

Generalization

(11) Infixation Immunity Generalization
Roots are immune to the effects of bleeding by infixation on root domain constraints.

Case Studies: Hebrew and Muna

Case Studies: Hebrew and Muna

Case Studies: Hebrew and Muna

Hebrew reflexive forms I

- ▶ In Hebrew (Afro-Asiatic, Israel), no root can contain two non-final identical syllable-adjacent consonants (Greenberg, 1950; McCarthy, 1979, 1981, 1986).
- ▶ In reflexive forms, a ⟨t⟩ is infixed after the first consonant in certain contexts, cf. (9).

Hebrew reflexive forms II

- (12) Hebrew RDC: OCP(C)
 katav *tatav
 write.PST
 namax *mamax
 become.short.PST
- (13) Hebrew Infix: reflexive forms sarak hi-s $\langle \mathbf{t} \rangle$ arek R_i- $\langle R_i \rangle$ comb filev hi- $\int \langle \mathbf{t} \rangle$ alev R_i- $\langle R_i \rangle$ integrate
- (14) Infix & RDC: reflexive form of /t/-medial root (Ezer Razin, p.c.) seter hi-s $\langle \mathbf{t} \rangle$ ater *hi-s $\langle \mathbf{t} \rangle$ aser $R_i \langle R_i \rangle$ hide $\int itef hi \int \langle \mathbf{t} \rangle atef *hi \int \langle \mathbf{t} \rangle afef$ $R_i \langle R_i \rangle$ share

Case Studies: Hebrew and Muna

Hebrew reflexive forms III

- ▶ The $\langle t \rangle$ can violate the RDC, but the ro $\langle t \rangle$ cannot, cf. (11)
- Hebrew is thus of type L1: Infix is ignored, (cf. McCarthy, 1979).

Case Studies: Hebrew and Muna

Muna irrealis forms I

- ► In Muna (Austronesian, Indonesia), a root cannot contain a labial obstruent followed by a bilabial nasal [m] (van den Berg, 1989), cf. (12).
- In irrealis forms, an infix ⟨um⟩ is added after the first consonant, cf. (13).

Muna irrealis forms II

```
(15) Muna RDC: *BM foni *fomi climb pili *pimi chose
```

```
(16) Muna Infix: irrealis forms dadi d\langle \mathbf{um} \rangleadi \langle \mathrm{IRR} \ranglelive gaa g\langle \mathbf{um} \rangleaa \langle \mathrm{IRR} \ranglemarry
```

```
(17) Infix & RDC: irrealis form of B-initial roots foni \mathbf{m}-oni *f\langle um\rangleoni,*m-omi IRR-climb pili \mathbf{m}-ili *p\langle um\rangleili IRR-chose
```

Case Studies: Hebrew and Muna

Muna irrealis forms III

- ▶ Both ⟨m⟩ and ro⟨⟩ot cannot violate the RDC, such instances are repaired, cf. (14).
- ► Muna is thus of Type L1: infix & ro⟨⟩ot undergo RDC.

Hierarchical Morphoprosodic Structure

Hierarchical Morphoprosodic Structure I

- ► A fixed rankings of OT-constraints (Prince & Smolensky, 1993) explains the gap.
- ► The constraint domains derive from prosodic constituents (cf. Itô & Mester, 2021).

Hierarchical Morphoprosodic Structure II

(18) Prosodic Domains in Infixation

▶ A domain is either only material directly dominated (DD) by the root constituent \sqrt{C} , i.e. the Ro $\langle \rangle$ ot, or all material dominated (D) by \sqrt{C} , i.e. Ro $\langle \text{Infix} \rangle$ ot, cf. (18).

Analyses: A fixed ranking

- Constraint with domains derived by direct domination always dominate constraints with domains derived by domination from the same prosodic constituent, i.e. RDC_{DD}≫RDC_D (cf. Suzuki, 1998), cf. (19).
- This excludes L3.

(19) Partal factorial typology

Ranking	language	RDC domains
RDC _{DD} ≫ FAITH≫RDC _D	L1, Hebrew	$Ro\langle angle$ ot
$RDC_{DD} \gg RDC_{D} \gg FAITH$	L2, Muna	$Ro\langle Infix \rangle ot, Ro\langle \rangle ot$
*RDC _D ≫FAITH≫RDC _{DD}	L3	$Ro\langle Infix \rangle ot$

Analyses: Two different rankings

Analyses: Two different rankings

Analyses: Two different rankings I

- ▶ In Hebrew, the infix is ignored because only the RDC_{DD} constraint is ranked high, (18).
- (20) OCP(C) $_{\sqrt{C}, DD}$ Count one violation for any two syllable adjacent non-final identical consonants inside material directly dominated by \sqrt{C} .
- (21) OCP(C) $_{\sqrt{C},D}$ Count one violation for any two syllable adjacent non-final identical consonants inside material dominated by \sqrt{C} .

Analyses: Two different rankings II

(22) Hebrew requires $RDC_{\sqrt{C},DD} \gg FAITH \gg RDC_{\sqrt{C},D}$

Input: stater	$OCP(C)_{\sqrt{C},DD}$	FAITH	$OCP(C)_{\sqrt{C},D}$
√C C /\ S a. s t a t e r			*
b. starer		*!	

Analyses: Two different rankings III

- ▶ In Muna, ranking both the RDC-constraint above FAITH yields an additional repair.
- (23) *BM $_{\sqrt{C}, DD}$ Count one violation for a sequence of a labial obstruent and a syllable adjacent /m/ inside material directly dominated by \sqrt{C} .
- (24) *BM $_{\sqrt{C},DD}$ Count one violation for a sequence of a labial obstruent and a syllable adjacent /m/ inside material dominated by \sqrt{C} .

Analyses: Two different rankings IV

(25) Muna requires $RDC_{\sqrt{C},DD}$, $RDC_{\sqrt{C},D} \gg FAITH$

Input:	fumomi	$*BM_{\sqrt{C},DD}$	*BM $_{\sqrt{C},D}$	FAITH
	\sqrt{C}			
ı≅a.	m o n i			**
	\sqrt{C}			
	C			
b.	fumoni		*!	*

Serial approaches overgenerate!

Serial approaches overgenerate!

- ➤ Serial approaches with some kind of phonology-morphology interleaving (e.g. SPE (Chomsky & Halle, 1968), Lexical Phonology (Kiparsky, 1982), Stratal OT (Kiparsky, 2015)) predict L3 by ordering a repair for the RDC after infixation, cf. (26), (27).
- ▶ Late ordering of the RDC is independently needed to derive L2, Muna.

(26) Overgeneration of Serial Approaches

Order of Application	ı Language	RDC Domain
RDC≺Infixation	L1, Hebrew	$Ro\langle\rangle$ ot
$RDC \prec Infixation \prec RI$	OC L2, Muna	$Ro\langle Infix \rangle ot, Ro\langle \rangle ot$
*Infixation≺RDC	L3	$Ro\langle Infix \rangle ot$

Cyclic Infixation (Kalin, 2022) I

- ► Kalin (2022) proposes a cyclic account of infixation where infixes are procedurally special in that they involve some kind of reordering.
- This is based on data from allomorphy, lexical and regular phonology.
- ► This approach has to assume a cycle of phonology before and after infixation in order to derive the L2 (Muna) pattern.
- ► This also predicts that L3 should exist if the RDC only applies at the cycle after infixation.

Cyclic Infixation (Kalin, 2022) II

- (27) Example derivation of L3 in Kalin's work
 - a. First Cycle
 - (i) Exponent Choice: tetu tetu(ii) Restricted Phonology: —
 - a. Second Cycle
 - (i) Exponent Choice: $\langle it \rangle$ tetu
 - (ii) Displacement: $t\langle it \rangle$ etu
 - (iii) Restricted Phonology: tedu t(is)etu

Strong Domain Hypothesis

- This problem could be solved by Strong Domain Hypothesis (SDH) (Kiparsky, 1985), which restricts phonological rules from applying only after morphology.
- However, empirically the SDH does not hold for prefixes and suffixes (cf. e.g. Mohanan, 1989; Hualde, 1989; Hyman, 1993; Kaisse, 1993).
- ► Therefore, an ordering restriction would have to be stipulated between phonological processes and infixation, but not other affixation processes.

Infix Representations

- ▶ In the present approach, prefixes and suffixes show more variation in their prosodic constituency and therefore might be subject to different constraint, depending on their prosodic constituency, (28).
- Infixes are representationally special, not procedurally.
- (28) Possible Prosody for other affixes

(29) Prosodic Domains in Infixation

Conclusion

Conclusion

- There is an empirical gap in the interaction of infixation and root domain constraints.
- Root domain constraints are immune to bleeding by infixation.
- Parallel OT can derive this as a fixed ranking between constraints relativized to different domains derived from the same prosodic root constituents.
- Serial approaches overgenerate the unattested pattern and cannot be easily restricted to exclude it.

- Albright, Adam. 2004. The emergence of the marked: Root-domain markedness in Lakhota. LSA talk handout, Boston.
- van den Berg, René. 1989. A grammar of the Muna language. Dodrecht: Foris.
- Chomsky, Noam & Morris Halle. 1968. *The sound pattern of English*. New York, NY: Harper & Row.
- Gouskova, Maria. 2003. *Deriving economy: syncope in Optimality Theory*. Amherst, MA: University of Massachusetts dissertation.
- Greenberg, Joseph H. 1950. The patterning of root morphemes in semitic. *Word* 6(2). 162–181.
- Halle, Morris. 1959. The sound pattern of Russian. The Hague: Mouton.
- Hualde, José Ignacio. 1989. The strict cycle condition and noncyclic rules. *Linguistic Inquiry* 20(4). 675–680.
- Hyman, Larry M. 1993. Structure preservation and postlexical tonology in Dagbani. In Sharon Hargus & Ellen M. Kaisse (eds.), *Studies in lexical phonology*, 235–254. San Diego, CA: Academic Press.
- Itô, Junko & Armin Mester. 2021. Recursive prosody and the prosodic form of compounds. *Languages* 6(2).

- Kaisse, Ellen M. 1993. Rule reordering and rule generalization in lexical phonology: A reconsideration. In Sharon Hargus & Ellen M. Kaisse (eds.), Studies in lexical phonology, 343–363. San Diego, CA: Academic Press.
- Kalin, Laura. 2022. Infixes really are (underlyingly) prefixes/suffixes: Evidence from allomorphy on the fine timing of infixation. *Language* To appear.
- Kiparsky, Paul. 1982. Lexical morphology and phonology. In The linguistic society of Korea (ed.), *Linguistics in the morning calm: Selected papers from SICOL-1981*, 3–91. Seoul: Hansin.
- Kiparsky, Paul. 1985. Some consequences of lexical phonology. *Phonology yearbook* 2(1). 85–138.
- Kiparsky, Paul. 2015. Stratal OT: A synopsis and FAQs. In Yuchau E. Hsiao & Lian-Hee Wee (eds.), *Capturing phonological shades within and across languages*, 1–45. Newcastle: Cambridge Scholars Publishing.
- McCarthy, John J. 1979. Formal problems in Semitic phonology and morphology. Cambridge, MA: MIT dissertation.
- McCarthy, John J. 1981. A prosodic theory of nonconcatenative morphology. *Linguistic Inquiry* 12(3). 373–418.

- McCarthy, John J. 1982. Prosodic structure and expletive infixation. *Language* 574–590.
- McCarthy, John J. 1986. OCP effects: Gemination and antigemination. *Linguistic Inquiry* 17(2). 207–263.
- McCarthy, John J. 1998. Morpheme structure constraints and paradigm occultation. In M. Catherine Gruber, Derrick Higgins, Kenneth Olson & Tamra Wysocki (eds.), *CLS 32*, part 2: The panels, 123–150. Chicago, IL: Chicago Linguistic Society.
- Mielke, Jeff. 2005. Ambivalence and ambiguity in laterals and nasals. *Phonology* 22(02). 169–203.
- Mohanan, Tara. 1989. Syllable structure in Malayalam. *Linguistic Inquiry* 589–625.
- Myers, Scott. 2004. OCP effects in Optimality Theory. In John J. McCarthy (ed.), *Optimality theory in phonology: A reader*, 246–269. Oxford: Blackwell Publishing.
- van Oostendorp, Marc. 1999. Italian s-voicing and the structure of the phonological word. In S.J. Hannahs & Mike Davenport (eds.), *Issues in phonological structure*, 195–212. Amsterdam: John Benjamins.

- Prince, Alan & Paul Smolensky. 1993. Optimality Theory: Constraint interaction in generative grammar. Available online at http://roa.rutgers.edu/files/537-0802/537-0802-PRINCE-0-0.PDF.
- Selkirk, Elisabeth. 2011. The syntax-phonology interface. In John Goldsmith, Jason Riggle & Alan Yu (eds.), *The handbook of phonological theory*, 435–483. Oxford: Blackwell.
- Suzuki, Keiichiro. 1998. *A typological investigation of dissimilation*. Tucson, AZ: University of Arizona dissertation.
- Tebay, Sören E. 2022. *Interacting (with) Morpheme Structure Constraints*. Leipzig: Universität Leipzig dissertation.
- Yu, Alan. 2004. Infixing with a vengeance: Pingding Mandarin infixation. *Journal of East Asian Linguistics* 13(1). 39–58.
- Yu, Alan. 2007. A natural history of infixation. Oxford: Oxford University Press.
- Zuraw, Kie & Yu-An Lu. 2009. Diverse repairs for multiple labial consonants. Natural Language & Linguistic Theory 27(1). 197–224.

Infixes and Prosodic Structure I

- Somewhat counterintuitively, MATCH-Theory (Selkirk, 2011) predicts that infixes are prosodically more independent than other affixes under ther assumption that some MATCH-constraint applies to morphemes α and some prosodic constituent π (van Oostendorp, 1999).
- ▶ If no other constraint militates against recursive structures (cf. Gouskova, 2003), prosodically independent infixes are favored because they satisfy all MATCH constraints.

Infixes and Prosodic Structure II

- (30) Match constraints favor recursive structure for infixes
 - a. Ilicit structure: MATCH (α,π) *****, MATCH (π,α)

$$\sqrt{C}$$
 ro infix ot

b. Recursive structure: MATCH (α,π) \checkmark , MATCH (π,α) \checkmark

Infixes and Prosodic Structure III

- Structures with prefixes and suffixes, on the other hand, can never satisfy both constraints.
- ► Therefore, more variation in prosodic structure is expected.

Infixes and Prosodic Structure IV

- (31) Satisfaction of MATCH-constraints with prefixes
 - a. Prefixes: $MATCH(\alpha,\pi) \bigstar$, $MATCH(\pi,\alpha) \bigstar$

$$C$$
 \sqrt{C}
refix root

b. Prefixes: MATCH (α,π) \checkmark , MATCH (π,α)

$$C$$

C

V

refix root

c. Prefixes: MATCH (α,π) *****, MATCH (π,α) *****

RoTB and MSCs

- Systematic phononological generalization on monomorphemic domains exist (Tebay, 2022).
- ► Early approaches to generative phonology introduced Morpheme-Structure-Rules, which are ordered before other phonological rules and appy to inputs to phonology (Halle, 1959).
- ► These approaches generally predict L3 to exist.
- ▶ In a parallel OT-approach where Richness of the Base (Prince & Smolensky, 1993) disallows any language-specific restrictions on the input, these domains have to apply to the output (McCarthy, 1998; Albright, 2004; Tebay, 2022).