Parallel Interaction between Infixation and Root Domain Constraints

Sören E. Tebay (U Leipzig)

tebay@uni-leipzig.de

NELS 53

January 12th 2023

New empirical gap in interaction between infixation and root domain constraints! Serial approaches to phonology predict empirically unattested pattern!

1. Infixation & Root Domain Constraints ~ Phonological Root domain constraints (RDCs) are phonological generalizations that hold over roots (Albright, 2004).

- \sim Infixation can split up root domains leading to discontiguous roots (Yu, 2007), cf. (1).
- \sim How do these building blocks interact?
- (1) Infixation: $[Root]_{root\ domain} + Infix \rightarrow Ro\langle infix \rangle ot$
- \sim In the hypothetical language L, a root domain constraint forbids roots from containing syllable adjacent identical consonants, repaired by dissimilation, cf. (2).
- \sim Additionally, L features an infix $\langle it \rangle$ that attaches after the initial consonant, cf. (3).

4. Hierarchical Morphoprosodic Structure

 \sim A fixed rankings of OT-constraints (Prince & Smolensky, 1993) explains the gap.

 \sim The constraint domains derive from prosodic constituents (cf. Itô & Mester, 2021).

 \sim A domain is either only material directly dominated (DD) by the root constituent \sqrt{C} ,

 \sim Constraint with domains derived by direct domination always dominate constraints

with domains derived by domination, i.e. $RDC_{DD}\gg RDC_D$ (cf. Suzuki, 1998), cf. (17).

i.e. the Ro $\langle \rangle$ ot, or all material dominated (D) by \sqrt{C} , i.e. Ro \langle Infix \rangle ot, cf. (15).

language

 $RDC_{DD} \gg RDC_{D} \gg FAITH$ L2, Muna $Ro\langle Infix \rangle ot$, $Ro\langle \rangle ot$

 $RDC_{DD} \gg FAITH \gg RDC_D$ L1, Hebrew $Ro\langle\rangle$ ot

- RDC in L (3) Infixation in L sida *sisa sida s $\langle it \rangle$ ida goko *gogo goko g $\langle it \rangle$ oko tepu *tetu tepu $/t\langle it \rangle$ etu $/\to$ [???] tubi *tuti tubi $/t\langle it \rangle$ uti $/\to$ [???]
- \sim What happens if an infix attaches to a root that already containts a /t/?
- \sim Is the infix affected by the root domain constraint?
- \sim Is the non-contiguous root still affected by the root domain constraint?
- (5) L3: No RDC for $ro\langle\rangle$ ot tepu $t\langle is\rangle$ etu tubi $t\langle is\rangle$ uti Ro $\langle Infix\rangle$ ot

Prosodic Domains in Infixation

 $ightarrow [\sqrt{C}.\mathsf{DD} \ \mathsf{Ro}\langle\rangle\mathsf{ot}], [\sqrt{C}.\mathsf{D} \mathsf{Ro}\langle\mathsf{Infix}\rangle\mathsf{ot}]$

Partal factorial typology

*RDC_{DD} \gg RDC_D \gg FAITH L3

Ro Infix ot

 \sim This excludes L3.

Ranking

L1: Infix is ignored.

tepu $t\langle it \rangle e \mathbf{p} u$ tubi $t\langle it \rangle u \mathbf{b} i$ **Ro** $\langle Infix \rangle \mathbf{ot}$

Possible Prosody for other Affixes

Prefix Root Suffix

RDC domains

 $Ro\langle Infix \rangle ot$

L2: infix & root undergo RDC tepu t(is)epu Ro/Infix

tubi t⟨i**s**⟩u**b**i

 $Ro\langle Infix \rangle ot$

2. Case Studies: Hebrew and Muna

- \sim In Hebrew (Afro-Asiatic, Israel), no root can contain two non-final identical consonants.
- \sim In reflexive forms, a $\langle t \rangle$ is infixed after the first consonant in certain contexts, cf. (8).
- (7) Hebrew RDC (8) Hebrew Infix (9) Infix & RDC katav *tatav sarak hi-s $\langle \mathbf{t} \rangle$ arek seter hi-s $\langle \mathbf{t} \rangle$ ater write.PST R_i - $\langle R_i \rangle$ comb R_i - $\langle R_i \rangle$ hide namax *mamax filev hi- $\int \langle \mathbf{t} \rangle$ alev fitef hi- $\int \langle \mathbf{t} \rangle$ atef become.short.PST R_i - $\langle R_i \rangle$ integrate R_i - $\langle R_i \rangle$ share
- \sim The $\langle t \rangle$ can violate the RDC, but the ro $\langle \rangle$ ot cannot, cf. (9)
- \sim Hebrew is thus of type L1: Infix is ignored.
- \sim In Muna (Austronesian, Indonesia), a root cannot contain a labial obstruent followed by a bilabial nasal [m] (van den Berg, 1989), cf. (10).
- \sim In irrealis forms, an infix $\langle m \rangle$ is added after the first consonant, cf. (11).
- (10) Muna RDC (11) Muna Infix (12) Infix & RDC foni *fomi dadi d $\langle um \rangle$ adi foni m-oni climb $\langle IRR \rangle$ live IRR-climb pili *pimi gaa g $\langle um \rangle$ aa pili m-ili chose $\langle IRR \rangle$ marry IRR-chose
- \sim Both $\langle \mathsf{m}
 angle$ and ro $\langle
 angle$ ot cannot violate the RDC, such instances are repaired, cf. (12).
- \sim Muna is thus of Type L1: infix & ro $\langle \rangle$ ot undergo RDC.

5. Analyses: Two different rankings

- \sim In Hebrew, the infix is ignored because only the RDC_{DD} constraint is ranked high, (18).
- (18) Hebrew requires $RDC_{\sqrt{C},DD} \gg FAITH \gg RDC_{\sqrt{C},D}$ Input stater $OCP(C)_{\sqrt{C},DD}$ FAITH $OCP(C)_{\sqrt{C},D}$ a a s t a t e r a

b starer

- \sim In Muna, ranking both the RDC-constraint above FAITH yields an additional repair.

3. Typological Survey: No L3!

- 4) Genealogical Distribution
 top-level family L1 L2 None Total
 Austronesian 1 19 5 25
 Afro-Asiatic 4 1 5 10
 Nakh-Dagestanian 1 0 0 1
 Sino-Tibetan 2 0 0 2
 Austroasiatic 2 0 2 4
 Nuclear Torricelli 2 0 0 2
 Other 0 0 11 11
 Total 12 20 23 55
- ~ A typological study of 55 patterns in 32 languages from 9 families with RDCs and infixation shows **no L3 languages**, but 12 L1 and 20 L2 patterns, cf. (13).
- ~ Infixation also interacts with OCP/dissimilation (Hebrew, Muna), maximality constraints/deletion (Hunzib, Nakh-Dagestanian), and syllable structure (Semelai, Austroasiatic; Yeri, Nuclear Torricelli).
- \sim L2 mainly occurs in Austronesian languages, wheras L1 is more widely distributed, cf. (14).

6. Serial approaches overgenerate!

- \sim Serial approaches (e.g. SPE (Chomsky & Halle, 1968), Lexical Phonology (Kiparsky, 1982), Stratal OT (Kiparsky, 2015)) predict L3 by ordering a repair for the RDC after infixation, cf. (20,21).
- \sim Late ordering of the RDC is independently needed to derive L4, Muna.
- Overgeneration of Serial Approaches
 Order of Application Language RDC Domain

 RDC \prec Infixation L1, Hebrew Ro $\langle \rangle$ ot

 RDC \prec Infixation \prec RDC L2, Muna Ro \langle Infix \rangle ot, Ro $\langle \rangle$ ot

 *Infixation \prec RDC Ro \langle Infix \rangle ot
- Derivation of L3 in a serial approach Input sida tepu tetu tetu Infixation $s\langle it \rangle$ ida $t\langle it \rangle$ epu $t\langle it \rangle$ etu RDC $t\langle is \rangle$ epu tepu tisetu Output [sitida] [tisepu] [tepu] [tisetu]
- \sim This problem could be solved by Strong Domain Hypothesis (SDH) (Kiparsky, 1985), which restricts rules from applying only after morphology.
- \sim However, empricially the SDH does not hold for prefixes and suffixes (cf. e.g. Mohanan, 1989; Hualde, 1989; Hyman, 1993; Kaisse, 1993).
- \sim In the present approach, prefixes and suffixes show more variation in their prosodic constituency and therefore might be subject to different constraint, depending on their prosodic constituency, cf. (16).
- \sim Infixes are **representationally** special, not procedurally.

Selected references: Albright, A. 2004. The emergence of the marked. LSA talk, Boston. and postlexical tonology in Dagbani. In S. Hargus & E. Kaisse (eds.), Studies in lexical phonology, 235–254. San Diego: Academic Press. Itô, J. & A. Mester. 2021. Recursive prosodic form of compounds. Languages 6(2). Kaisse, E. 1993. Rule reordering and rule generalization in lexical phonology. In S. Hargus & E. Kaisse (eds.), Studies in lexical phonology, 343–363. San Diego: Academic Press. Mohanan, T. 1989. Syllable structure in Malayalam. Linguistic Inquiry 20(4) 589–625. Suzuki, K. 1998. A typological investigation of dissimilation. Tucson: U of Arizona dissertation. Yu, A. 2007. A natural history of infixation. Oxford: OUP.