Headed Spans and Asymmetric Non-Triggers in Vowel Harmony

Sören E. Tebay

Universität Leipzig

26.05.2022 29th Manchester Phonology Meeting

Main Claim

- * Asymmetric Non-Triggers (ANTs) pose a problem for standard parallel Optimality Theory.
- * This problem can be solved by assuming Headed Spans as representations.

Outline of this Talk

- 1 Asymmetric Non-Triggers
- 2 ANTs in Assamese
- 3 Headed Spans Analysis
- 4 Alternative Approaches
- **5** Discussion & Conclusion

Asymmetric Non-Triggers

- In an asymmetric non-trigger (ANT) pattern, a certain vowel quality is only licit as the result of vowel harmony.
- The same vowel quality cannot occur as a trigger of vowel harmony or in isolation.
- Clements (1984, 1985) describes such an ANT pattern for Akan (Atlantic-Congo, Ghana).

Asymmetric Non-Triggers: Akan Data I

- In Akan vowel harmony, affix vowels assimilate in the feature [ATR] to a root.
- (1) Akan regular harmony (Clements, 1985, 62,78)
 - a. e-<u>bu</u>-o 'nest'
 - c-<u>vd</u>-3 .d 'stone'
 - c. o-be-<u>tu</u>-i 'he came and dug it'
 - d. $5-b\epsilon-\underline{t}\underline{\upsilon}-1$ 'he came and threw it'
 - e. ɔ-<u>kasa</u>-ɪ 'he spoke'

Asymmetric Non-Triggers: Akan Data II

(a) can occur as the result of vowel harmony, but not as the trigger or in a root.

(2) Akan vowel inventory (triggers underlined) (Clements, 1985, 57)

		Front	Back
high	+ATR	į *	<u>u</u>
	-ATR	Ţ Ţ	<u>u</u> <u>℧</u>
mid	+ATR	<u>e</u>	<u>O</u>
	-ATR	<u>e</u> <u>≎</u>	<u>o</u> <u>↑</u>
low	+ATR		ě
	-ATR		<u>a</u>

Asymmetric Non-Triggers: Akan Data III

- [a] can occur as the result of vowel harmony, (3-a).
- ★ [ə] cannot occur as the trigger of vowel harmony, (3-b).
- * $[\vartheta]$ cannot occur in isolation, (3-c).
- (3) Distribution of [a]
 - a. w-ə-<u>di,</u> *w-a-<u>di</u> 'he has eaten'
 - b. *o-<u>kəsə</u>-i
 - c. kasa, **kəsə 'to speak'

Asymmetric Non-Triggers: SPOT problem

- * Clements (1984, 1985) identifies this as problem for a parallel constraint-based approach, similar to Optimality Theory.
- * If a vowel harmony constraint is ranked above a constraint *ə, [ə] can occur both as the trigger and as an undergoer of vowel harmony.
- * If the ranking is reversed, $[\vartheta]$ can never occur, even as the result of vowel harmony.

(4) Failure of simple SPOT analysis

1:	/ɔ/-/kəsə/-/ɪ/	HARMONY(ATR)	* ə	IDENT(ATR)
a.	okəsəi	*!		
☞ b.	okəsəi		*	*
& c.	əkasaı	*!		*

Asymmetric Non-Triggers: Typology

- This pattern is not an isolated case.
- * A close inspection of cases reported in Casali (2003); van der Hulst (2018); Rolle et al. (2020) and similar works, reveals 56 languages with an ANT pattern in vowel harmony.

(5) Crosslinguistic distribution of ANT types

ANTs	Harmonizing Feature	# of languages
e,o	[+ATR]	26
ą	[+ATR]	10
$_{\mathrm{I},\mho}$	[-ATR]	6
e,o,a	[+ATR]	5
Ι,Ψ	[+raised]	3
Others		6
Total		56

ANTs in Assamese: Data I

- 🔌 A further ANT pattern is reported and analyzed for Assamese (Indo-European, India) by Mahanta (2008).
- 🔏 In Assamese dominant-recessive regressive [+ATR] harmony, non-low [-ATR] vowels assimilate to a following [+ATR] vowel in the feature [+ATR].
- (6) Right-to-Left [+ATR] harmony in Assamese (Mahanta 2008, 7,91,94, Mahanta 2012, 1112)
 - a. $/gvl/-/i/ \rightarrow [guli]$ 'to mix'
 - b. $/p^hur/-/\upsilon/ \rightarrow [p^hur\upsilon]$ 'travel, roam (1.PRS)' d. $/b^hut/-/\epsilon/ \rightarrow [b^hut\epsilon]$ 'ghost (ERG)'

 - d. $/pvr/-/\epsilon/ \rightarrow [pvre]$ 'fall (3.PRS)'
 - e. $/kor/ \rightarrow [kor]$ 'do '

ANTs in Assamese: Data II

[e] and [o] are ANTs.

(7) <u>Assamese vowel inventory (Mah</u>anta, 2008, 58) (triggers underlined)

		Front	Back
high	+ATR	<u>i</u>	<u>u</u>
	-ATR		υ
mid	+ATR	e	0
	-ATR	arepsilon	$^{\uparrow}$
low			α

ANTs in Assamese: Data III

- [e o] can occur as the result of vowel harmony, (8-a).
- [e o] cannot occur as the trigger in affixes (8-b,c) or in isolated roots (8-d).
- (8) Right-to-Left [+ATR] harmony in Assamese (Mahanta 2008, 7,91,94, Mahanta 2012, 1112)
 - a. $/\text{pet/-/u/} \rightarrow [\text{petu}]$ 'pot bellied'
 - b. $/kor/-*/o/ \rightarrow *[koro]$
 - c. $/por/-*/e/ \rightarrow *[pure]$
 - d. $*/kor/ \rightarrow *[kor]$

ANTs in Assamese: SPOT problem

- This is again a problem for standard parallel OT.
- * ANTs cannot be banned in general.
- They can also not be allowed in all vowel harmony contexts.

(9) Failure of simple SPOT analysis

l:	/kɔr/-/o/	HARMONY(ATR)	*e,o	IDENT(ATR)
a.	kəro	*!		
☞ b.	koro		*	*
& c.	kərə	*!		*

Headed Spans Analysis: Background I

- * Headed Spans Theory was originally proposed to solve the Sour Grapes problem in Optimality Theory (McCarthy, 2004).
- * All segments connected to one and the same feature form a span.
- * This span has to include exactly one head.
- (10) Headed Spans

Headed Spans Analysis: Background II

- st In vowel harmony, the head of an output span is the trigger, (11-a).
- * In simple spans, the only segment is automatically the head, (11-b).
- * I notate the head with a thick association line an underlined segment.

(11) Simple and complex headed spans

Headed Spans Analysis: Constraints on Heads I

- Headed Spans Theory allows for constraints on the feature specification of heads of certain feature spans.
- * Banning [e o] from the head position of a [+ATR] span allows for [e o] acting as non-triggers.
- (12) *SPANHEAD(e,o)(+ATR) (=*SH(eo))Count one violation for every [+ATR] span that is headed by a [-high,-low] vowel.

Headed Spans Analysis: Constraints on Heads II

(13) [+ATR] mid vowels as non-triggers because of head markedness

Headed Spans Analysis: Constraints on Heads III

- The same constraint still allows [e o] as undergoers of vowel harmony.
- * In such a context, [e o] occur as non-heads.
- ★ The constraint *SH(eo) is not violated.

Headed Spans Analysis: Constraints on Heads IV

(14) Derived [+ATR] mid vowels in Assamese as non-heads

Headed Spans Analysis: Constraints on Heads V

- ★ In an isolated root, a single vowel is necessarily the head of a [+ATR] span.
- * Therefore, *SH(eo) also bans [e o] from this position.

Headed Spans Analysis: Constraints on Heads VI

(15) No [+ATR] mid vowels in isolated roots due to head markedness

Headed Spans Analysis: Summary

- In sum, Headed Spans Theory allows for an asymmetric representation of vowel harmony as feature spans.
- * A constraint on span heads allows banning ANTs from triggering vowel harmony.

Alternative Approaches

- Previous approaches on ANTs were either based on a serial architecture of grammar (Clements, 1984, 1985; Trommer, 2011) or complex faithfulness constraints (Mahanta, 2008, 2012).
- * I provide a conceptual argument that neither approach can uphold Richness of the Base (Prince & Smolensky, 1993) and Output-Drivenness (Tesar, 2013).
- (16) Richness of the Base
 There are no language-specific constraint on the input.
- (17) Output Drivenness (Tesar, 2013, 13)

 A phonological map is output-driven if, for any mapping from an input to an output, any other input that has greater similarity to the output also maps to the same output.

Alternative Approaches: Serial Accounts

- Serial approaches have been based on explicit constraint on underlying representations (Clements 1984, 1985 for Akan) or a root stratum/pre-optimization (Trommer 2011 for Päri).
- The basic logic always bans ANTs from the input of phonology proper and later on derives ANTs by the application of vowel harmony.
- This means that ANTs are excluded on a language-specific basis before any other phonological or morphological operation takes place.
- * Therefore, serial approaches cannot uphold Richness of the Base.

Alternative Approaches: Complex Faithfulness

- Mahanta (2008, 2012) suggests an account for Assamese based on a complex faithfulness constraint IDENT(ATR)_{+high}, which protects the ATR value of high vowels.
- Triggers are thus especially protected, but non-triggers can be neutralized to [-ATR] mid vowels unless they need to fulfill vowel harmony requirements.
- Such complex faithfulness constraints predict non-output-driven patterns, which might pose problems for learnability (Tesar, 2013).

Discussion

* Asymmetric Non-Triggers seem to be mostly be restricted to the following vowels [a e o ɪ ʊ].

(18) Crosslinguistic distribution of ANT types

$\begin{array}{c cccc} ANTs & Harmonizing Feature & \# \ of \ languages \\ \hline e,o & [+ATR] & 26 \\ a & [+ATR] & 10 \\ I,v & [-ATR] & 6 \\ e,o,a & [+ATR] & 5 \\ I,v & [+raised] & 3 \\ Others & 6 \\ \hline Total & 56 \\ \end{array}$			<i>7</i> 1
	ANTs	Harmonizing Feature	# of languages
I, σ [-ATR] 6 e,o,a [+ATR] 5 I, σ [+raised] 3 Others 6	e,o	[+ATR]	26
e,o,a $[+ATR]$ 5 I, V $[+raised]$ 3 Others 6	ą	[+ATR]	10
$\underline{I}, \underline{V}$ [+raised] 3 Others 6	$_{\mathrm{I,U}}$	[-ATR]	6
Others 6	e,o,a	[+ATR]	5
	Į,Ų	[+raised]	3
Total 56	Others		6
	Total		56

- * These vowels have been independently argued to be articulatory marked (Archangeli & Pulleyblank, 1994).
- Constraints on span heads might be interpreted as markedness constraints relativized to head positions.

Conclusion

- Asymmetric Non-Triggers pose a challenge to standard parallel OT.
- Headed Spans Theory provides a solution to this problem.
- Alternative approaches cannot uphold Richness of the Base or Output-Drivenness.

References I

- Archangeli, Diana & Douglas Pulleyblank. 1994. *Grounded phonology*. Cambridge, MA: MIT Press.
- Casali, Roderic F. 2003. ATR value asymmetries and underlying vowel inventory structure in Niger-Congo and Nilo-Saharan. *Linguistic Typology* 7(3). 307–382.
- Clements, George. 1984. Vowel harmony in Akan: A consideration of Stewart's word structure conditions. *Studies in African Linguistics* 15(3). 321–338.
- Clements, George. 1985. Akan vowel harmony: a nonlinear analysis. In Didier L. Goyvaerts (ed.), *African linguistics: Essays in memory of M.W.K. Semikenke*, 55–98. Amsterdam: John Benjamins.
- van der Hulst, Harry. 2018. Asymmetries in vowel harmony: A representational account. Oxford: Oxford University Press.

References II

- Kaplan, Aaron. 2011. Harmonic improvement without candidate chains in Chamorro. *Linguistic Inquiry* 42(4). 631–650.
- Kavitskaya, Darya & Peter Staroverov. 2010. When an interaction is both opaque and transparent: the paradox of fed counterfeeding. *Phonology* 27(2). 255–288.
- Mahanta, Shakuntala. 2008. Directionality and locality in vowel harmony: With special reference to vowel harmony in Assamese. Utrecht: Utrecht Institute of Linguistics dissertation.
- Mahanta, Shakuntala. 2012. Locality in exceptions and derived environments in vowel harmony. *Natural Language & Linguistic Theory* 30(4). 1109–1146.
- McCarthy, John J. 2002. Comparative markedness (long version). Linguistics Department Faculty Publication Series 30.
- McCarthy, John J. 2004. Headed spans and autosegmental spreading. Linguistics Department Faculty Publication Series 42.

References III

- Prince, Alan & Paul Smolensky. 1993. Optimality Theory: Constraint interaction in generative grammar. Available online at http://roa.rutgers.edu/files/537-0802/537-0802-PRINCE-0-0.PDF.
- Rolle, Nicholas, Florian Lionnet & Matthew Faytak. 2020. Areal patterns in the vowel systems of the Macro-Sudan Belt. *Linguistic Typology* 24(1). 113–179.
- Tesar, Bruce. 2013. *Output-driven phonology: Theory and learning*. Cambridge: Cambridge University Press.
- Trommer, Jochen. 2011. Phonological aspects of Western Nilotic mutation morphology. Habilitation.
- Walker, Rachel. 2005. Weak triggers in vowel harmony. *Natural Language & Linguistic Theory* 23(4). 917–989.

Vowel Harmony Constraints

- The constraint responsible for vowel harmony restrictions is not crucial for the argument.
- For a SPOT-Analysis, splitting the vowel harmony constraint into constraints for harmony, directionality, and dominance does not allow for exclusion of ANTs from being triggers.
- * For the sake of concreteness, the following constraints are assumed in the headed spans analysis.
- (19) Further constraints on Assamese vowel harmony
 - a. *ADJACENTSPANS(ATR) Count one violation for each pair of adjacent $[\pm ATR]$ spans.
 - b. SPANHEAD-RIGHT(+ATR) Count one violation for an every [+ATR] span that is not headed by its final segment.
 - c. FAITHFULNESSHEADSPAN(+ATR) Count one violation for a segment that is the head of a [+ATR]-Span in the input but not in the output.

LICENSE-based approaches

- Mahanta (2012) hints at a LICENSE-based account (Walker, 2005; Kaplan, 2011) of some vowel harmony facts in Assamese.
- * A local licensing approach cannot be empirically adequate here, since forms such as (20), require non-local licensing.
- * If the licensing constraint is based on association to feature spans, it becomes very similar to a headed spans approach.
- (20) $/k\epsilon t\epsilon r/-/ij\alpha/ \rightarrow [keterija]$ 'peevish'

Stem-Level Neutralization

- * A different approach would neutralize [e o] with [ϵ o] at the stem level.
- Vowel harmony would then apply at the word level.
- * Assamese, however, also possesses a set of prefixes which do not undergo all processes related to vowel harmony.
- * In prefixes, the same restrictions on [e o] hold.
- * This means that some vowel harmony related processes have to apply to a domain smaller than the word, i.e. at the stem level.

Opaqueness and Derived-Environment Effects

- * ANTs instantiate an opaque pattern of (fed) counterfeeding in a serial framework (cf. Kavitskaya & Staroverov, 2010).
- Vowel harmony would feed the ban on [e o] if the order of processes where reversed.
- ANTs are not a case of derived environment effects/grandfather effects (DEE) because no process or constraint can be said to apply only in derived environments.
- Instead, certain segments are only allowed if derived, which cannot be analyzed with standard OT devices for DEE like comparative markedness (McCarthy, 2002).