Advanced Statistical Physics - Problem set 3

Summer Terms 2022

Hand in: Hand in tasks marked with * to mailbox no. (43) inside ITP room 105b by Friday 29.04. at 9:15 am.

4. Surface of N-dimensional sphere*

(a) Calculate the surface area Ω of an N - dimensional sphere?
(b) Show that the surface of an N-sphere is for large N to leading order given by

$$
\Omega_{0}=\exp \left(\frac{N}{2}[1+\ln 2 \pi]\right)
$$

(c) Evaluate the surface of a cap on the N -sphere defined by all vectors \boldsymbol{J} that make an angle smaller or equal to θ with a given direction defined by the vector \boldsymbol{T}. Show that this surface is dominated by the rim of the cap ?

5. The annealed approximation*

In the lectures, we have introduced the auxiliary variables

$$
\lambda_{\mu}=\frac{1}{\sqrt{N}} \boldsymbol{J} \boldsymbol{\xi}^{\mu}, u_{\mu}=\frac{1}{\sqrt{N}} \boldsymbol{T} \boldsymbol{\xi}^{\mu}
$$

(a) Show that the joint probability density $P(\lambda, u)$ is indeed a Gaussian probability density . Start from

$$
P(\lambda, u)=\left\langle\left\langle\delta\left(\lambda-\frac{1}{\sqrt{N}} \boldsymbol{J} \boldsymbol{\xi}\right) \delta\left(u-\frac{1}{\sqrt{N}} \boldsymbol{T} \boldsymbol{\xi}\right)\right\rangle\right\rangle_{\boldsymbol{\xi}}
$$

where the average is with respect to a randomly chosen example $\boldsymbol{\xi}$, which have the probability distribution function

$$
P(\boldsymbol{\xi})=\prod_{j}\left[\frac{1}{2} \delta\left(\boldsymbol{\xi}_{j}+1\right)+\frac{1}{2} \delta\left(\boldsymbol{\xi}_{j}-1\right)\right]
$$

Hint : you may use
The integral representation of the delta function

$$
\delta(x)=\int \frac{d \hat{x}}{2 \pi} e^{i \hat{x} x}
$$

The Hubbard-Stratonovich transformation

$$
\begin{aligned}
\int D t e^{b t} & =e^{b^{2} / 2} \\
\text { where } D t & :=\frac{d t}{\sqrt{2 \pi}} \exp \left(-t^{2} / 2\right)
\end{aligned}
$$

(b) Show that the distribution $P(\lambda, u)$ has the moments

$$
\begin{aligned}
\langle\langle\lambda\rangle\rangle & =\langle\langle u\rangle\rangle=0 \\
\left\langle\left\langle\lambda^{2}\right\rangle\right\rangle & =\left\langle\left\langle u^{2}\right\rangle\right\rangle=1 \\
\langle\langle\lambda u\rangle\rangle & =\frac{\boldsymbol{J} \boldsymbol{T}}{N}=R .
\end{aligned}
$$

