
Institut for Theoretical Physics Prof. Dr. B. Rosenow
University Leipzig M. Kühn

Statistical Mechanics of Deep Learning - Problem set 14

Winter Term 2024/25

Hand in Python code: Before Monday 03.02.2025, 9:15, only submit the Python code
you have written. Share a Google Colab Notebook with your code
and send the link via email to itpleipzig@gmail.com.

25. Wide Networks and Gaussian Processes 3 + 3 + 3 Points

In the lecture, the equivalence between noisy gradient descent training with L2-regularization
of an infinitely wide neural network and a Gaussian process is established. The purpose of this
problem is to numerically validate the equivalence between training a wide neural network and
predicting the test data with a Gaussian process.

(a) We consider a two-layer neural network defined by

fw(x) =

N∑
i=1

w
(2)
i g

 d∑
j=1

w
(1)
ij xj

 ,

with ReLU transfer function g(z) = θ(z) z and input x ∈ Rd. The corresponding Gaussian
process is defined by the kernel

K(x,x′) = ⟨fw(x)fw(x′)⟩w

where the average is performed over the set of weights {w(2)
i , w

(1)
ij }. To make the coding

simpler later on, we choose the variances σ2
1 = σ2

2 = 1/
√
dN . Numerically, the average can

be performed by initializing many, e.g. M = 400, different networks using Pytorch, and
then computing

K(x,x′) =
1

M

M∑
i=1

fwi(x)fwi(x
′) .

Perform the average for N = 1000 hidden units, and for 200 pairs of vectors x,x′ ∈ Sd for
d = 10. Compare the numerically averaged kernel with the analytic result

Kanalytic(x,x
′) = σ2

1σ
2
2N

1

2π
(sin θ + (π − θ) cos θ) where cos θ = (x,x′)

by plotting the set of 200 pairs of data points {K(x,x′), arccos(x,x′)} together with the
theoretical prediction Kanalytic(θ).

(b) Draw p = 40 training data points xi ∈ Sd and generate labels yi via the target function
h(x) =

√
d · |x · T| with a fixed T ∈ Sd which has randomly chosen components and is

then normalized to unity. Now Kanalytic(xi,xj) ≡ Kij defines a p×p matrix. Compute Kij .
The main appeal of Gaussian processes is that Bayesian Inference with Gaussian process
priors is tractable. In Gaussian process inference we use the mean of the Gaussian process
distribution conditioned on the data (posterior) as the predictor g∗, and it is given by

1

https://colab.research.google.com/
mailto:itpleipzig@gmail.com

g∗(xtest) =

p∑
n,m=1

Kanalytic(xtest,xn)
(
K + σ2I

)−1

n,m
ym .

Here, I denotes the identity matrix, σ2 = 0.1 acts as a regulator of the prediction and can
be understood as assuming the labels have a Gaussian noise with variance σ2. (K+σ2I)−1

n,m

must be understood as inverting the matrix (K+σ2I) and evaluating the inverse for indices
n,m. A good check for a correct implementation is that for σ = 0 you must find g∗(xi) = yi.
Next, draw 40 test vectors xi,test ∈ Sd, and compute the full squared error (loss) as

40∑
i=1

[g∗(xi,test)− h(xi,test)]
2

over the test vectors. Similarly, calculate the train loss.

(c) Build a neural network as described in (a) for N=1000 and train it on the data set pre-
pared in (b). Use gradient descent with full squared error as loss function and, after each
update step, add a gaussian random vector ξ with zero mean and standard deviation of
2 ∗

√
learning rate ∗ σ to the weight vector to achieve noisy gradient descent. Use L2-

regularization with strength λ = 2σ2/σ2
1. Train for 10000 update steps with a learning

rate of 0.001. What is the train and test loss of the final network on the data set prepared
in (b)? What is the train and test loss if you save the corresponding outputs the network
returns for the examples every 100 update steps and then calculate the loss for the average
of these outputs? Compare the results of (b) and (c) for multiple randomly initialized data
sets.

Hint: To add the random vector to the weights you can use the following code:

with torch.no_grad():

for param in network.parameters():

random_vector = 2*sigma*np.sqrt(lr)*torch.randn_like(param)

param.add_(random_vector)

Furthermore, to use full squared error, pass the argument ‘reduction=“sum”’ to the Pytorch
function:

criterion = nn.MSELoss(reduction="sum")

2

