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The problem set will be discussed in the seminar on Monday 13.01.2024, 9:15.

20. On-line learning of soft committee machines 3+3 Points

Consider the order parameter dynamical equations of a soft committee machine with the acti-
vation function taken to be the error function, in the symmetric regime (we assume Rin = R,
Qik = Q) and in the small η limit, https://arxiv.org/abs/2104.14546
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we take M = K, the number of hidden units of the teacher network M is equal to the student
network K in the realizable case. The generalization error is given by
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(a) Show that equations (1) and (2) have the following fixed points, which correspond to the
symmetric phase solution at the plateu discussed in the lecture
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(b) Use the results obtained in (a) to compute the generalization error at the platue
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Hint : note that on the platue, we have Rpl = Spl and Qpl = Cpl
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21. Neural Scaling Laws 3+3+6 Points

Consider online learning of a perceptron with a linear activation function in a student-teacher
setup. The setup consits of the teacher vector T ∈ RN and the student vector J(α) ∈ RN , where
α signifies the ratio between the number of examples already shown and the input dimension
N . The examples are drawn from a multivariate Gaussian distribution ξ ∼ N (0,Σ), where the
covariance matrix Σ is diagonal with entries λi, i = 1, . . . , N , on its diagonal. The student
output is given as σ(J , ξ) = J · ξ, and the teacher output is given as τ(T , ξ) = T · ξ.

(a) The generalization error is given by the mean squared error:

εg(J) =
1

2
⟨(σ(J , ξ)− τ(T , ξ))2⟩ξ∼N (0,Σ) .

Show that when the examples have a diagonal covariance matrix as described before, the
generalization error is equal to the following expression:

εg(J) =
1

2

N∑
i=1
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2.

(b) The teacher vector is given as Ti ≡ 1 for i = 1, . . . , N , and the student vector is initialized
as Ji(0) = 0 for i = 1, . . . , N . Consider the case of a comparatively small learning rate
η in which the dynamics of the student vector are described by the following differential
equation:
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.

Solve the differential equation for ⟨J⟩(α) with the given initial conditions. Demonstrate
that the result for the generalization error, with a general diagonal covariance matrix as
described before, is given by:

εg(α) =
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N∑
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λi exp(−2ηαλi).

(c) If all eigenvalues of the data covariance matrix are the same (λi = λ ∀i), it is straight-
forward to see from the previous equation that the generalization error will decay expo-
nentially with increasing α. However, real-world datasets often exhibit power-law spectra
in their covariance matrices. Therefore, assume that the eigenvalues of the given diagonal
data covariance are given by:

λi =
λ+

i1+β
, β > 0.

Here, λ+ is a normalization factor, and for this task, it is sufficient to assume it to be
a positive constant. Show that with this assumption, the generalization error calculated
before follows a power-law decrease with increasing α, specifically:

εg(α) ∝ α
− β

1+β .

Hint: Approximate the sum in the generalization error as an integral and make appro-
ximations by taking the limit of N → ∞ and by assuming that a significant number of

examples have already been shown to the network
(
α ≫ 1

2ηλ+

)
. You may use the fact that
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