Prof. Dr. B. Rosenow
Dr. S. Fischer

Advanced Quantum Mechanics - Problem Set 13

Winter Term 2021/22
Due Date: Hand in solutions to problems marked with * before Monday, 31.01.2022, 12:00. The problem set will be discussed in the tutorials on Wednesday, 2.02.2022, and Friday, 2.02.2022

1. SSH model with a domain wall

In an earlier problem we considered the SSH model as an example of a tight-binding Hamiltonian. We found that the Hamiltonian can be written as

$$
H(k)=\left(\begin{array}{cc}
0 & -\gamma(k) \\
-\gamma^{*}(k) & 0
\end{array}\right)
$$

where $\gamma(k)=t+s e^{-i k}$. Here t denotes the coupling within a unit cell and s the coupling between sites in different unit cells.
(a) Expand $\gamma(k)$ around a zone boundary $k= \pm \pi+q$ and thus show that the Hamiltonian becomes

$$
H=m \sigma_{x}-i \partial_{x} s \sigma_{y} .
$$

Give an expression for m in terms of s and t.
(b) Assume now that there is a domain wall at $x=0$ such that $m(x)=m_{0} \operatorname{sgn}(x)$. Find the zero-energy solution by demanding that the solutions are continuous at $x=0$ and normalizable.
Hint: You may wish to apply H to the Schrödinger equation before solving.

*2. Unit cell in the presence of a magnetic field

Recall that the operator $\hat{T}_{\boldsymbol{a}}=e^{\frac{i}{\hbar} a \cdot \hat{\boldsymbol{p}}}$ is the generator of translations. For a Hamiltonian with lattice translation symmetry, these operators commute with the Hamiltonian. In a magnetic field this is no longer the case since the vector potential is not translationally invariant. In this problem we will consider a two-dimensional electron gas in the presence of a magnetic field in the z-direction $\boldsymbol{B}=(0,0, B)$. The Hamiltonian can be written as

$$
\hat{H}=\frac{(\hat{\boldsymbol{p}}-e \boldsymbol{A}(\boldsymbol{r}))^{2}}{2 m}+V(\boldsymbol{r}),
$$

where $V(\boldsymbol{r})$ is the periodic lattice potential, i.e. $V(\boldsymbol{r}+\boldsymbol{a})=V(\boldsymbol{r})$ for lattice vectors \boldsymbol{a}. For this problem we use the symmetric gauge $\boldsymbol{A}(\boldsymbol{r})=\frac{1}{2}(-B y, B x, 0)$.
(a) Show that the translation operator

$$
\hat{\mathcal{T}}_{\boldsymbol{a}}=\exp \left\{\frac{i}{\hbar} \boldsymbol{a} \cdot[\hat{\boldsymbol{p}}+e \boldsymbol{A}(\boldsymbol{r})]\right\}
$$

commutes with the Hamiltonian. This translation operator is called a magnetic translation operator.
(b) Show that

$$
\hat{\mathcal{T}}_{a} \hat{\mathcal{T}}_{\boldsymbol{b}}=\exp \left[\frac{i}{l_{0}^{2}}(\boldsymbol{a} \times \boldsymbol{b}) \cdot \hat{\boldsymbol{e}}_{z}\right] \hat{\mathcal{T}}_{\boldsymbol{b}} \hat{\mathcal{T}}_{a} .
$$

Here $l_{0}=\sqrt{\frac{\hbar}{e B}}$ is the magnetic length and $\hat{\boldsymbol{e}}_{z}$ is a unit vector perpendicular to the plane.
(c) We now want to determine the enlarged unit cell such that the magnetic translation operators commute with each other. Let therefore $n \boldsymbol{a}$ and $m \boldsymbol{b}$ span an enlarged unit cell in the plane. In this case the magnetic translation operators have to commute with each other. Show that this is only possible if the flux $\Phi=\boldsymbol{B} \cdot(\boldsymbol{a} \times \boldsymbol{b})$ satisfies

$$
\frac{\Phi}{\Phi_{0}}=\frac{l}{m n},
$$

with l an integer and $\Phi_{0}=h / e$.

