Institut für Theoretische Physik

Prof. Dr. B. Rosenow

Universität Leipzig

Advanced Quantum Mechanics - Problem Set 9

Winter Term 2021/22

Due Date: Hand in solutions to problems marked with * before Monday, 03.01.2022, 12:00. The problem set will be discussed in the tutorials on Wednesday, 05.01.2022, and Friday, 07.01.2022.

*1. Addition of angular momenta

Consider two angular momenta $\hat{\boldsymbol{L}}_{1}$ and $\hat{\boldsymbol{L}}_{2}$ with $l_{1}=l_{2}=1$. In this problem we will calculate the eigenvalues and eigenfunctions of $\hat{\boldsymbol{L}}^{2}$. The eigenfunctions are linear combinations of the 9 functions

$$
Y_{1 m}\left(\theta_{1}, \varphi_{1}\right) Y_{1 m^{\prime}}\left(\theta_{2}, \varphi_{2}\right)=u_{m} v_{m^{\prime}}, \quad \text { with } m, m^{\prime}=1,0,-1
$$

(a) Construct the 9×9 matrix representation of the operator $\hat{\boldsymbol{L}}^{2}$ in the $u_{m} v_{m^{\prime}}$ basis.
(b) Calculate the eigenvalues of $\hat{\boldsymbol{L}}^{2}$ by diagonalizing the matrix.
(c) Calculate the corresponding eigenfunctions.

Hint: It is possible to make the matrix block-diagonal, as shown in the figure, by making suitable row- and column-operations.

Figure 1: The matrix can be transformed into a block diagonal form.

2. Spin-orbit coupling

Consider a particle with orbital angular momentum $\hat{\boldsymbol{L}}$ and spin angular momentum $\hat{\boldsymbol{S}}$. The total angular momentum is $\hat{\boldsymbol{J}}=\hat{\boldsymbol{L}}+\hat{\boldsymbol{S}}$.
(a) Calculate the expectation value of $\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}}$ assuming that the particle is in a state $|l, s ; j, m\rangle$.
(b) An electron is moving in an electrostatic potential $\phi(r)$ with $r=|\boldsymbol{r}|$. Show that the electric field experienced by the particle is given by

$$
\boldsymbol{E}=-\boldsymbol{r} \frac{1}{r} \frac{d \phi}{d r} .
$$

(c) In the rest frame of the particle, the particle experiences a magnetic field $\boldsymbol{B}=-\boldsymbol{v} \times \boldsymbol{E} / c^{2}$. Calculate the energy $\frac{e}{m} \boldsymbol{S} \cdot \boldsymbol{B}$, where e and m are the electron charge and mass respectively.

Remark: The result found in (c) is off by a factor of two compared to the exact result, which can be obtained using the Dirac equation. The reason is that the simple argument given above assumes a straight-line motion of the particle whereas the potential given above leads to a curved particle trajectory.

3. Spin-orbit coupling in Hydrogen

The spin-orbit Hamiltonian for Hydrogen is given by

$$
H_{\mathrm{SO}}=\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{m^{2} c^{2} r^{3}} \hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{L}} .
$$

We will treat this Hamiltonian as a perturbation in this problem.
(a) Using the relevant Hydrogen wave-function, calculate the leading order energy correction due to spin-orbit coupling, for $n=2$, and $l=1$. Take $s=1 / 2$ as the spin of the electron.
(b) Use Kramers' relation

$$
\frac{\alpha+1}{n^{2}}\left\langle r^{\alpha}\right\rangle-(2 \alpha+1) a\left\langle r^{\alpha-1}\right\rangle+\frac{\alpha}{4}\left[(2 l+1)^{2}-\alpha^{2}\right] a^{2}\left\langle r^{\alpha-2}\right\rangle=0,
$$

where a is the Bohr radius, to derive a relation between $\left\langle r^{-2}\right\rangle$ and $\left\langle r^{-3}\right\rangle$.
(c) Calculate the leading order energy correction due to spin-orbit coupling for general n and l. You may use that

$$
\left\langle r^{-2}\right\rangle=\frac{1}{(l+1 / 2) n^{3} a^{2}} .
$$

Hint: The result of task 2(a) might be helpful.

