Prof. Dr. B. Rosenow

Universität Leipzig

Dr. S. Fischer

Advanced Quantum Mechanics - Problem Set 8

Winter Term 2021/22

Due Date: Hand in solutions to problems marked with * before Monday, 13.12.2021, 12:00.
The problem set will be discussed in the tutorials on Wednesday, 15.12.2021, and Friday, 17.12.2021

1. Commutators and products of Dirac matrices

(Note that for bachelor students this problem is not mandatory in the course with the lower number of credit points.)

Consider the Dirac matrices

$$
\begin{aligned}
& \boldsymbol{\alpha}=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right), \\
& \beta=\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right),
\end{aligned}
$$

where $\boldsymbol{\sigma}$ is the vector of Pauli matrices and $\mathbb{1}_{2}$ is the 2 -dimensional unit matrix. Define also

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\sigma} & 0 \\
0 & \boldsymbol{\sigma}
\end{array}\right)
$$

(a) Show that (i) $\beta \Sigma_{i}=\Sigma_{i} \beta$, and that (ii) $\left[\alpha_{i}, \Sigma_{j}\right]=2 i \epsilon_{i j k} \alpha_{k}$.
(b) Show that

$$
\gamma^{1} \gamma^{3}=i\left(\begin{array}{cc}
\sigma_{y} & 0 \\
0 & \sigma_{y}
\end{array}\right)
$$

You can use the representation of γ-matrices stated in Problem 3 of Problem Set 6.

2. Four-current for the free particle solutions of the Dirac equation

The free particle solutions of the Dirac equation can be written using

$$
\boldsymbol{u}_{R}^{(+)}(p)=\left(\begin{array}{c}
1 \\
0 \\
\frac{p}{E_{p}+m} \\
0
\end{array}\right), \quad \boldsymbol{u}_{L}^{(+)}(p)=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\frac{-p}{E_{p}+m}
\end{array}\right)
$$

for solutions with positive energy $E=E_{p}$, and

$$
\boldsymbol{u}_{R}^{(-)}(p)=\left(\begin{array}{c}
\frac{-p}{E_{p}+m} \\
0 \\
1 \\
0
\end{array}\right), \quad \boldsymbol{u}_{L}^{(-)}(p)=\left(\begin{array}{c}
0 \\
\frac{p}{E_{p}+m} \\
0 \\
1
\end{array}\right)
$$

for solutions with negative energy $E=-E_{p}$.
(a) What are the free-particle wave-functions?
(b) Calculate the four-current $j^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi$, where $\bar{\Psi}=\Psi^{\dagger} \beta$. Interpret your result.
(Note that for bachelor students this problem is not mandatory in the course with the lower number of credit points.)

Define the fifth γ-matrix as $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ and consider the Dirac Hamiltonian

$$
H_{D}=\boldsymbol{\alpha} \cdot \boldsymbol{p}+\beta m,
$$

with

$$
\begin{aligned}
\boldsymbol{\alpha} & =\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
\boldsymbol{\sigma} & 0
\end{array}\right), \\
\beta & =\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right) .
\end{aligned}
$$

(a) Show that $\left\{\gamma^{\mu} \partial_{\mu}, \gamma^{5}\right\}=0$. The first term in the anti-commutator is known as the Dirac operator. Since the Dirac Hamiltonian can be constructed using $\gamma^{0} \gamma^{i}=\alpha^{i}$ and $\gamma^{0}=\beta$, the Hamiltonian anti-commutes with the operator $i \gamma^{1} \gamma^{2} \gamma^{3}$.
(b) Show that $\left(\gamma^{5}\right)^{2}=\mathbb{1}_{4}$.
(c) Using that $\sigma^{l} \sigma^{m}=i \varepsilon_{l m k} \sigma^{k}+\delta_{l m} \mathbb{1}_{2}$ show that $\gamma^{l} \gamma^{m}=-i \varepsilon_{l m k} \Sigma^{k}-\delta_{l m} \mathbb{1}_{4}$ for $l, m=1,2,3$ (this generalizes Problem 1(b)). Here $\Sigma^{k}=\left(\begin{array}{cc}\sigma^{k} & 0 \\ 0 & \sigma^{k}\end{array}\right)$.
(d) Consider now an operator \hat{C} with the property that $\hat{C}^{2}=\mathbb{1}$ and $\{\hat{H}, \hat{C}\}=0$. Show that if $\left|E_{n}\right\rangle$ is an eigenstate of the Hamiltonian H with eigenvalue E_{n}, then $\left|-E_{n}\right\rangle=C\left|E_{n}\right\rangle$ is also an eigenstate of the Hamiltonian with eigenvalue $-E_{n}$.
(e) Consider now a two-level system with energy eigenvalues $\pm E_{n}$. Write down the matrix representations of \hat{C} and \hat{H}, and show that H is anti-diagonal in the basis where C is diagonal.
(f) Generalize your result in (e) to N non-degenerate levels. That is, show that it is possible to diagonalize C in such a way that H becomes anti-diagonal. What happens qualitatively when there are degenerate eigenstates?

Hint: Diagonalize C (you know its eigenvalues!). You can construct H using your result in (e). Write down a suitable basis. Think about how to rearrange the rows and columns of your matrices such that the diagonal elements in C are sorted with the positive eigenvalues coming before the negative eigenvalues.

