Prof. Dr. B. Rosenow
Dr. S. Fischer

Universität Leipzig

Advanced Quantum Mechanics - Problem Set 6

Winter Term 2021/22
Due Date: Hand in solutions to problems marked with * before Monday, 29.11.2021, 12:00. The problem set will be discussed in the tutorials on Wednesday, 01.12.2021, and Friday, 03.12.2021

*1. Graphene

The Hamiltonian for graphene near the \boldsymbol{K}^{\prime} point is given by

$$
H=\hbar v_{F}\left(\begin{array}{cc}
0 & q_{x}+i q_{y} \\
q_{x}-i q_{y} & 0
\end{array}\right),
$$

where v_{F} is the Fermi velocity.
(a) Calculate the normalized eigenstates of this Hamiltonian.
(b) We now consider next-nearest neighbors. The Hamiltonian is then modified by

$$
H_{\mathrm{nnn}}=-\frac{t^{\prime}}{2} \sum_{\langle\langle i, j\rangle\rangle}(|i, A\rangle\langle j, A|+|i, B\rangle\langle j, B|+\mathrm{h.c}),
$$

where A and B denote different sub-lattices and the sum is over next-nearest neighbors. Write down the next-nearest neighbor lattice vectors.
(c) Show that the next-nearest neighbors give rise to an extra contribution to the spectrum of $-t^{\prime} f(\boldsymbol{q})$ with

$$
f(\boldsymbol{q})=2 \cos \left(\sqrt{3} q_{y} a\right)+4 \cos \left(\frac{\sqrt{3}}{2} q_{y} a\right) \cos \left(\frac{3}{2} q_{x} a\right) .
$$

2. Relativistic Landau Levels

A Hamiltonian for electrons moving in two spatial dimensions is given by

$$
H=v_{F}\left(\begin{array}{cc}
-\boldsymbol{\sigma}^{*} \cdot \boldsymbol{p} & 0 \\
0 & \boldsymbol{\sigma} \cdot \boldsymbol{p}
\end{array}\right),
$$

where v_{F} is the Fermi velocity, \boldsymbol{p} the momentum and $\boldsymbol{\sigma}$ the vector of Pauli matrices. The eigenstates can be written as four-dimensional state vectors with contributions from the \boldsymbol{K} and \boldsymbol{K}^{\prime} points. That is, we write

$$
\chi=\left(\begin{array}{l}
\chi_{A}^{\prime} \\
\chi_{B}^{\prime} \\
\chi_{A} \\
\chi_{B}
\end{array}\right) .
$$

(a) Show that the eigenvalue equations decouple into

$$
\begin{aligned}
& E^{2} \chi_{A}=v_{F}^{2}\left(p_{x}-i p_{y}\right)\left(p_{x}+i p_{y}\right) \chi_{A}, \\
& E^{2} \chi_{B}=v_{F}^{2}\left(p_{x}+i p_{y}\right)\left(p_{x}-i p_{y}\right) \chi_{B},
\end{aligned}
$$

and similar for the primed parts of the eigenstates.
(b) Suppose now a magnetic field is switched on. Using the Landau gauge $\boldsymbol{A}=(-B y, 0)$, perform the minimal substitution $\boldsymbol{p} \rightarrow \boldsymbol{p}-\frac{e}{c} \boldsymbol{A}$ in the eigenvalue equations in part (a) and deduce the form of the eigenfunctions.
(c) What does the energy spectrum look like?

3. Representations of γ matrices

(Note that for bachelor students this problem is not mandatory in the course with the lower number of credit points.)

The γ matrices can be written as

$$
\begin{aligned}
\gamma_{i} & =\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right), \quad i=1,2,3 \\
\gamma_{0} & =\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right),
\end{aligned}
$$

where σ_{i} denotes a Pauli matrix and $\mathbb{1}_{n}$ the $n \times n$ unit matrix. Consider the metric $\eta=$ $\operatorname{diag}(1,-1,-1,-1)$.
(a) Show that the γ matrices satisfy the Clifford algebra $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \eta_{\mu \nu} \mathbb{1}_{4}, \mu, \nu \in\{0,1,2,3\}$.
(b) A different representation is the Weyl representation where

$$
\gamma_{0}=\left(\begin{array}{cc}
0 & \mathbb{1}_{2} \\
\mathbb{1}_{2} & 0
\end{array}\right)
$$

Show that these still satisfy the Clifford algebra.
(c) Using only the Clifford algebra and properties of the trace show that $\operatorname{tr}\left(\gamma_{\mu}\right)=0, \operatorname{tr}\left(\gamma_{\mu} \gamma_{\nu}\right)=4 \eta_{\mu \nu}$, and $\operatorname{tr}\left(\gamma_{\mu} \gamma_{\nu} \gamma_{\rho}\right)=0$.

