Prof. Dr. B. Rosenow

Universität Leipzig

Advanced Quantum Mechanics - Problem Set 5

Winter Term 2021/22
Due Date: Hand in solutions to problems marked with * before Monday, 22.11.2021, 12:00. The problem set will be discussed in the tutorials on Wednesday, 24.11.2021, and Friday, 26.11.2021

*1. Time reversal of a lattice Hamiltonian

In this problem we will consider the effects of time reversal on a lattice Hamiltonian.
(a) First consider the lattice translation operator $\hat{T}_{a}=e^{-i \hat{p} a}$. How do the eigenvalues of the translation operator change when a momentum eigenstate $|p\rangle$ is transformed to its time-reversed state $\hat{\theta}|p\rangle$?
(b) Now consider the Hamiltonian

$$
H(\boldsymbol{k})=A_{x} \sin \left(k_{x}\right) \sigma_{x}+A_{y} \sin \left(k_{y}\right) \sigma_{y}+M \sigma_{z},
$$

where $\hbar k_{x}$ and $\hbar k_{y}$ are components of the momentum appearing in the eigenvalues of the translation operator, a is the lattice constant, and A_{x}, A_{y} and M are real constant. How does this Hamiltonian transform under time-reversal in the case where σ are (i) spin matrices and (ii) some "orbital" matrices (sublattice degree of freedom such as in the problem on the SSH model)?
(c) Generalize your result to a Hamiltonian of the form $H(\boldsymbol{k})=\boldsymbol{d}(\boldsymbol{k}) \cdot \boldsymbol{\sigma}$.

2. Rashba wire

In this problem we consider a quantum wire in the presence of a magnetic field. The Hamiltonian in basis $\Psi^{\dagger}=(|p, \uparrow\rangle,|p, \downarrow\rangle)$ is given by

$$
\hat{H}=\frac{p^{2}}{2 m}+\alpha p \sigma_{y}+B_{z} \sigma_{z},
$$

where α is a constant, B_{z} denotes the magnetic field in the z-direction, and σ_{i} are the usual Pauli matrices.
(a) First consider the case where $B_{z}=0$. Calculate the eigenvalues and eigenstates of the Hamiltonian. Plot the eigenvalues as a function of momentum and indicate the Kramers pairs in your plot. What is the total degeneracy?
(b) Repeat the calculation in (a) but with $B_{z} \neq 0$.
(c) Let now \hat{V} denote a hermitian operator which is even under time-reversal, i.e. $\hat{\theta} \hat{V} \hat{\theta}^{-1}=\hat{V}$. Let also $|k, \sigma\rangle$ denote an eigenstate of the Hamiltonian. Show that $\langle-k,-\sigma| \hat{V}|k, \sigma\rangle=0$.

Remark: A matrix element like the one in part (c) appears, for example, when trying to calculate the rate of back-scattering of electrons. The life-time τ of the electrons is then given by Fermi's golden rule as

$$
\left.\frac{1}{\tau}=\frac{2 \pi}{\hbar} \rho_{F}|\langle-k,-\sigma| \hat{V}| k, \sigma\right\rangle\left.\right|^{2}
$$

with ρ_{F} denoting the density of states at the Fermi level.

