Prof. Dr. B. Rosenow
Dr. S. Fischer

Advanced Quantum Mechanics - Problem Set 3

Winter Term 2021/22

Due Date: Hand in solutions to problems marked with * before Monday, 08.11.2021, 12:00. The problem set will be discussed in the tutorials on Wednesday, 10.11.2021, and Friday, 12.11.2021

*1. SSH model

Figure 1: The SSH model. The red and blue circles symbolise different types of sites. The thin lines denote couplings with strength $t(1-\delta)$ whilst the thick lines are couplings with strength $t(1+\delta)$. The dashed square denotes a unit cell.

In this problem we consider the Su-Schrieffer-Heeger (SSH) model which describes spinless fermions hopping on a one-dimensional lattice with staggered hopping amplitudes (see the figure). The model contains two sub-lattices, A and B and has the following Hamiltonian

$$
H=\sum_{n} t(1+\delta)|n, A\rangle\langle n, B|+t(1-\delta)|n+1, A\rangle\langle n, B|+\text { h.c.. }
$$

Here h.c. stands for hermitian conjugate and $|n, A\rangle$ describes a state of site n, in sublattice A. t and δ are taken to be real parameters.
(a) By Fourier transforming, $|n\rangle=\frac{1}{\sqrt{N}} \sum_{k} e^{-i n k}|k\rangle$, show that the Hamiltonian can be written as $H(k)=\boldsymbol{d}(k) \cdot \boldsymbol{\sigma}$, where $\boldsymbol{\sigma}$ is the vector of Pauli matrices, and $d_{x}(k)=t(1+\delta)+t(1-$ $\delta) \cos (k), d_{y}(k)=t(1-\delta) \sin (k)$, and $d_{z}(k)=0$.
Hint: Write the wave function as a vector with two components describing the amplitudes on the A and B sublattices, respectively.
(b) Calculate the energy eigenvalues of the system.
(c) Plot your result from (b) for $\delta>0$ and $\delta<0$. What happens when $\delta=0$?

2. Eigenspinors

Consider a spin $1 / 2$ system in the presence of an external magnetic field $\boldsymbol{B}=\boldsymbol{B} \hat{\boldsymbol{n}}$, where $\hat{\boldsymbol{n}}$ is a unit vector pointing in an arbitrary direction. The Hamiltonian of this system is given by

$$
\hat{H}=-\frac{e}{m c} \hat{\boldsymbol{S}} \cdot \boldsymbol{B},
$$

where $e<0$ is the electron charge, m the electron mass, c the speed of light, and $\hat{\boldsymbol{S}}$ the vector of $\operatorname{spin} 1 / 2$ operators.
(a) Calculate the eigenvalues and normalized eigenspinors of the Hamiltonian.
(b) Why does the direction of the eigenspinors only depend on $\hat{\boldsymbol{n}}$?

3. Time- and spin-reversal

(a) We denote the wave function of a spinless particle corresponding to a plane wave in three dimensions by $\psi(\boldsymbol{x}, t)$. Show that $\psi^{*}(\boldsymbol{x},-t)$ is the wave function for the plane wave if the momentum direction is reversed.
(b) Let $\chi(\hat{\boldsymbol{n}})$ be the eigenspinor you calculated in problem 2.(a), with positive eigenvalue. Using the explicit form of $\chi(\hat{\boldsymbol{n}})$ in terms of the polar and azimuthal angles which define $\hat{\boldsymbol{n}}$, verify that the eigenspinor with spin direction reversed is given by $-i \sigma_{y} \chi^{*}(\hat{\boldsymbol{n}})$.

