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Due Date: Only if you are below 50% of the total points, hand in solutions to problems marked
with * before the lecture on Friday, 07.02.2020, 09:15.

This exercise sheet is not mandatory, but you can solve it to get additional points. In case
that you already have at least 50% of the points from the exercises, it will not be marked. You
need a total of at least 121.5 points to be admitted to the exam.

The exam will take place on February 26 at 10:00 a.m. in the Theoretical Lecture
Hall. (Please also check the official website from the faculty in case that there are any updates:
https://www.physgeo.uni-leipzig.de/en/study/exams/ )

*36. Casimir Effect 4+4+2+1 Points

As shown in problem 28, the Hamiltonian of the quantized radiation field confined to a box with
volume V = L1L2L3 and with periodic boundary conditions, is given by

H =
∑
k

∑
λ=±

~ωk

(
a†k,λak,λ +

1

2

)
, ωk = c|k| , ki =

π

Li
ni , ni ∈ N .

In particular we found that the ground state, in which no modes are ex-
cited, has a divergent energy. Whilst this divergent vacuum zero-point
energy is not observable, the dependence on the boundaries does lead to
observable phenomena.
To investigate this, we consider in the following two conducting plates
with surface areas A = L1L2 seperated by a distance L3. In the plane
of the plates we will still be using periodic boundary conditions and con-
sider the limit L1, L2 → ∞. Since the electric field E on the plates vanishes, only modes with
|E| ∝ sin(k3x3) are possible. Here k3 = n3π/L3 with n3 = 1, 2, . . .. To get a finite vacuum
energy we will moreover introduce an exponential cutoff e−εωk with ε > 0, and take the limit of
ε→ 0 at the end of the calculation. The energy density per unit plate area between the plates
is given by

σE(L3) = lim
L1,L2→∞

1

L1L2

∑
k

~ωk e
−εωk

= ~c
∞∑

n3=1

∫
d2k

(2π)2

√
k21 + k22 + (πn3

L3
)2 e
−εc

√
k21+k

2
2+(

πn3
L3

)2

(a) Using polar coordinates and a suitable subsitution show that σE(L3) can be written as

σE(L3) =
~

2πc2
∂2

∂ε2

∞∑
n=1

∫ ∞
nπc/L3

dωe−εω .
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(b) Calculate the integral over ω and perform the sum to show that

σE(L3) =
~

2πc2
∂2

∂ε2

(1

ε

1

eεπc/L3 − 1

)
.

Show further that

σE(L3) =
~

2πc2

( 6

ε4
L3

πc
− 1

ε3
− 1

360

(πc
L3

)3
+O(ε2)

)
.

(c) The energy density calculated in the previous part diverges as the dis-
tance between the plates increases (L3 →∞). This will be our reference
point. We therefore consider two plates separated by a fixed distance
a, together with two external plates which are places a further distance
(L− a)/2 away. The relevant energy density is then given by

σE(a, L) = σE(a) + 2σE

(
L− a

2

)
.

Find an expression for σE(a, L) using your result in (b).

(d) Since the energy density varies with the distance between plates, the plates experience a
pressure which is given by

pvac = − lim
L→∞

∂

∂a
σE(a, L).

How large is this pressure for A = 1 cm2 and a = 1µm?

*37. Zitterbewegung 2+2+2 Points

In this problem we will consider the Dirac Hamiltonian

ĤD = cα · p̂+ βmc2,

where m is the mass of the particle, c is the speed of light, and α and β are matrices given by

α =

(
0 σ
σ 0

)
,

β =

(
I2 0
0 −I2

)
,

with σ denoting the vector of Pauli matrices and I2 denoting the 2× 2 unit matrix. The Pauli
matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(a) Show that the velocity operator is given by v̂ = cα.

Hint: You may use the Heisenberg equation of motion which states that an operator Â

which does not explicitly depend on time satisfies −i~ ˙̂
A = [Ĥ, Â].
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(b) Consider now a Dirac particle at rest in a volume V . A general eigenspinor can then be
written as

ψ =
1√
2V




1
0
0
0

 e−imc
2t/~ +


0
0
1
0

 eimc
2t/~

 .
Give a physical interpretation of the two terms in the spinor.

(c) Derive an expression for 〈v̂z〉 = 〈ψ|v̂z|ψ〉 using the spinor defined in the previous part of
the problem. Comment on your result.
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