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Advanced Quantum Mechanics - Problem Set 13
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Due Date: Hand in solutions to problems marked with * before the lecture on Friday,
31.01.2020, 09:15. The problem set will be discussed in the tutorials on Wednes-
day, 05.02.2020, and Friday, 07.02.2020.

*34. Unit cell in the presence of a magnetic field 2+5+3 Points

Recall that the operator T̂a = e
i
~a·p̂ is the generator of translations. For a Hamiltonian with

lattice translation symmetry, these operators commute with the Hamiltonian. In a magnetic
field this is no longer the case since the vector potential is not translationally invariant. In this
problem we will consider a two-dimensional electron gas in the presence of a magnetic field in
the z-direction B = (0, 0, B). The Hamiltonian can be written as

Ĥ =
(p̂− eA(r))2

2m
+ V (r),

where V (r) is the periodic lattice potential, i.e. V (r + a) = V (r) for lattice vectors a. For this
problem we use the symmetric gauge A(r) = 1

2(−By,Bx, 0).

(a) Show that the translation operator

T̂a = exp

{
i

~
a · [p̂ + eA(r)]

}
commutes with the Hamiltonian. This translation operator is called a magnetic translation
operator.

(b) Show that

T̂aT̂b = exp

[
i

l20
(a× b) · êz

]
T̂bT̂a.

Here l0 =
√

~
eB is the magnetic length and êz is a unit vector perpendicular to the plane.

(c) We now want to determine the enlarged unit cell such that the magnetic translation
operators commute with each other. Let therefore na and mb span an enlarged unit cell
in the plane. In this case the magnetic translation operators have to commute with each
other. Show that this is only possible if the flux Φ = B · (a× b) satisfies

Φ

Φ0
=

l

mn
,

with l an integer and Φ0 = h/e.
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35. Anyons and the Aharonov-Bohm effect 2+2 Points

Consider a two-dimensional electron gas in the presence of a magnetic field. The conductivity
tensor is given by

σ =

(
0 σxy
σxy 0

)
,

where σxy = νe2/h, with 0 < ν < 1, is the Hall conductivity.

(a) Suppose now a flux Φ is turned on adiabatically. Using Faraday’s law and that the current
density is given by J = σE, where E is the induced electric field, show that the charge
satisfies Q̇ = σxyΦ̇. How does the charge change if the flux changes by Φ0 = h/e?

(b) Now consider the composite object (quasiparticle) of a flux Φ0 and charge q = νe. De-
termine the mutual statistics of these quasi particles. When do these composite objects
behave as electrons? What do you get for ν = 1/3 and ν = 1/5? These states have been
observed in experiments.

Hint: The exchange of the two quasi particles corresponds to moving one quasi particle by
half a circle and performing a translation. This suggests that the wave function acquires a
phase, which is half of the Berry acquired by a charge q = νe moving along a path enclosing
a magnetic flux Φ0 (see problem 33). Use this reasoning to obtain the exchange statistics
of the composite objects for different values of ν. Quasi particles which acquire a phase
different from 0 (bosons) or π (fermions) in the exchange are called anyons.

Figure 1: Left: The composite object is made up of a flux enclosed by a path C and a charge.
Right: Illustration of how to exchange two quasi particles.
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