Advanced Quantum Mechanics - Problem Set 13

Winter Term 2019/20

Due Date: Hand in solutions to problems marked with * before the lecture on **Friday**, **31.01.2020**, **09:15**. The problem set will be discussed in the tutorials on Wednesday, 05.02.2020, and Friday, 07.02.2020.

*34. Unit cell in the presence of a magnetic field 2+5+3 Points

Recall that the operator $\hat{T}_a = e^{\frac{i}{\hbar}a\cdot\hat{p}}$ is the generator of translations. For a Hamiltonian with lattice translation symmetry, these operators commute with the Hamiltonian. In a magnetic field this is no longer the case since the vector potential is not translationally invariant. In this problem we will consider a two-dimensional electron gas in the presence of a magnetic field in the z-direction $\mathbf{B} = (0,0,B)$. The Hamiltonian can be written as

$$\hat{H} = \frac{(\hat{\boldsymbol{p}} - e\boldsymbol{A}(\boldsymbol{r}))^2}{2m} + V(\boldsymbol{r}),$$

where $V(\mathbf{r})$ is the periodic lattice potential, i.e. $V(\mathbf{r} + \mathbf{a}) = V(\mathbf{r})$ for lattice vectors \mathbf{a} . For this problem we use the symmetric gauge $\mathbf{A}(\mathbf{r}) = \frac{1}{2}(-By, Bx, 0)$.

(a) Show that the translation operator

$$\hat{\mathcal{T}}_{a} = \exp\left\{\frac{i}{\hbar} a \cdot [\hat{p} + eA(r)]\right\}$$

commutes with the Hamiltonian. This translation operator is called a magnetic translation operator.

(b) Show that

$$\hat{\mathcal{T}}_{m{a}}\hat{\mathcal{T}}_{m{b}} = \exp\left[rac{i}{l_0^2}(m{a} imesm{b})\cdot\hat{m{e}}_z
ight]\hat{\mathcal{T}}_{m{b}}\hat{\mathcal{T}}_{m{a}}.$$

Here $l_0 = \sqrt{\frac{\hbar}{eB}}$ is the magnetic length and \hat{e}_z is a unit vector perpendicular to the plane.

(c) We now want to determine the enlarged unit cell such that the magnetic translation operators commute with each other. Let therefore $n\mathbf{a}$ and $m\mathbf{b}$ span an enlarged unit cell in the plane. In this case the magnetic translation operators have to commute with each other. Show that this is only possible if the flux $\Phi = \mathbf{B} \cdot (\mathbf{a} \times \mathbf{b})$ satisfies

$$\frac{\Phi}{\Phi_0} = \frac{l}{mn},$$

with l an integer and $\Phi_0 = h/e$.

Consider a two-dimensional electron gas in the presence of a magnetic field. The conductivity tensor is given by

$$\sigma = \left(\begin{array}{cc} 0 & \sigma_{xy} \\ \sigma_{xy} & 0 \end{array}\right),$$

where $\sigma_{xy} = \nu e^2/h$, with $0 < \nu < 1$, is the Hall conductivity.

- (a) Suppose now a flux Φ is turned on adiabatically. Using Faraday's law and that the current density is given by $J = \sigma E$, where E is the induced electric field, show that the charge satisfies $\dot{Q} = \sigma_{xy}\dot{\Phi}$. How does the charge change if the flux changes by $\Phi_0 = h/e$?
- (b) Now consider the composite object (quasiparticle) of a flux Φ_0 and charge $q = \nu e$. Determine the mutual statistics of these quasi particles. When do these composite objects behave as electrons? What do you get for $\nu = 1/3$ and $\nu = 1/5$? These states have been observed in experiments.

Hint: The exchange of the two quasi particles corresponds to moving one quasi particle by half a circle and performing a translation. This suggests that the wave function acquires a phase, which is half of the Berry acquired by a charge $q = \nu e$ moving along a path enclosing a magnetic flux Φ_0 (see problem 33). Use this reasoning to obtain the exchange statistics of the composite objects for different values of ν . Quasi particles which acquire a phase different from 0 (bosons) or π (fermions) in the exchange are called anyons.

Figure 1: Left: The composite object is made up of a flux enclosed by a path \mathcal{C} and a charge. Right: Illustration of how to exchange two quasi particles.