Advanced Quantum Mechanics - Problem Set 3

Winter Term 2019/20

Due Date: Hand in solutions to problems marked with * before the lecture on **Friday**, **08.11.2019**, **09:15**. The problem set will be discussed in the tutorials on Wednesday, 13.11.2019, and Friday, 15.11.2019

7. Eigenspinors

4+1 Points

Consider a spin 1/2 system in the presence of an external magnetic field $\mathbf{B} = B\hat{\mathbf{n}}$, where $\hat{\mathbf{n}}$ is a unit vector pointing in an arbitrary direction. The Hamiltonian of this system is given by

$$\hat{H} = -\frac{e}{mc}\hat{\mathbf{S}} \cdot \mathbf{B},$$

where e < 0 is the electron charge, m the electron mass, c the speed of light, and \hat{S} the vector of spin 1/2 operators.

- (a) Calculate the eigenvalues and normalized eigenspinors of the Hamiltonian.
- (b) Why does the direction of the eigenspinors only depend on \hat{n} ?

8. Time- and spin-reversal

2+3 Points

- (a) Denote the wave function of a spinless particle corresponding to a plane wave in three dimensions by $\psi(\boldsymbol{x},t)$. Show that $\psi^*(\boldsymbol{x},-t)$ is the wave function for the plane wave if the momentum direction is reversed.
- (b) Let $\chi(\hat{\boldsymbol{n}})$ be the eigenspinor you calculated in the previous problem, with eigenvalue +1. Using the explicit form of $\chi(\hat{\boldsymbol{n}})$ in terms of the polar and azimuthal angles which define $\hat{\boldsymbol{n}}$, verify that the eigenspinor with spin direction reversed is given by $-i\sigma_y\chi^*(\hat{\boldsymbol{n}})$.

*9. Nearly free electron model

3+2+2+3 Points

Often it is sufficient to treat the periodic potential on a lattice as a small perturbation. For such problems it is useful to expand the periodic potential in a plane wave expansion which only contains waves with the periodicity of the reciprocal lattice, such that

$$U(\boldsymbol{x}) = \sum_{\boldsymbol{G}} U_{\boldsymbol{G}} e^{i\boldsymbol{G} \cdot \boldsymbol{x}},$$

where G is a reciprocal lattice vector which satisfies $e^{iG \cdot R} = 1$, with R denoting a point on the lattice. We moreover expand the wave functions in terms of a set of plane waves which satisfy the periodic boundary conditions of the problem

$$\psi(\mathbf{x}) = \sum_{\mathbf{k}} c_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}}.$$

(a) Using the expansions above, show that the Schrödinger equation

$$\left[\frac{-\hbar^2 \nabla^2}{2m} + U(\boldsymbol{x})\right] \psi(\boldsymbol{x}) = E\psi(\boldsymbol{x}),$$

can be written as

$$\left(\frac{\hbar^2 k^2}{2m} - E\right) c_{\mathbf{k}} + \sum_{\mathbf{G}} U_{\mathbf{G}} c_{\mathbf{k} - \mathbf{G}} = 0.$$

(b) Perform the shift q = k + K, where K is a reciprocal lattice vector which ensures that we can always find a q which lies in the first Brillouin zone¹, and show that the Schrödinger equation now gives

$$\left(\frac{\hbar^2}{2m}(\boldsymbol{q}-\boldsymbol{K})^2 - E\right)c_{\boldsymbol{q}-\boldsymbol{K}} + \sum_{\boldsymbol{G}} U_{\boldsymbol{G}-\boldsymbol{K}}c_{\boldsymbol{q}-\boldsymbol{G}} = 0.$$

(c) Consider for concreteness a one-dimensional chain, but in the simple case where only the leading Fourier component contributes to the potential

$$U(x) = 2U_0 \cos \frac{2\pi x}{a}.$$

Explain how your result in (b) can be used to calculate the energy of the system.

(d) Suppose now that U_0 is very small. Near $q = \pi/a$ the Schrödinger equation reduces to

$$\begin{pmatrix} \frac{\hbar^2}{2m} \left(q - \frac{2\pi}{a} \right)^2 - E & U_0 \\ U_0 & \frac{\hbar^2 q^2}{2m} - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_0 \end{pmatrix} = 0.$$

Calculate and plot the energy eigenvalues. What happens at $q = \pi/a$?

As an example of a Brillouin zone consider the simple cubic lattice with sides of length a. Any point on the lattice can be written in terms of $a_1 = a\hat{x}$, $a_2 = a\hat{y}$, and $a_3 = a\hat{z}$. In reciprocal space the basis vectors become $b_1 = \frac{2\pi}{a}\hat{x}$, $b_2 = \frac{2\pi}{a}\hat{y}$, and $b_3 = \frac{2\pi}{a}\hat{z}$. The boundaries of the first Brillouin zone are then the planes normal to the six vectors $\pm b_1$, $\pm b_2$, and $\pm b_3$. The length of each side is $2\pi/a$.