Quantum Mechanics 2 - Problem Set 4

Wintersemester 2017/2018

Abgabe: The problem set will be discussed in the tutorials on Thursday, 09.11.2017, 11:00 (German) and Friday, 10.11.2017, 13:30 (English).

11. Momentum-space wavefunctions

2 Punkte

Let $\phi(\mathbf{p})$ be the momentum-space wavefunction for a state $|\alpha\rangle$, such that $\phi(\mathbf{p}) = \langle \mathbf{p} | \alpha \rangle$. Let also Θ denote the time-reversal operator. Is the momentum-space wavefunction for the time-reversed state $\Theta|\alpha\rangle$ given by $\phi(\mathbf{p})$, $\phi(-\mathbf{p})$, $\phi^*(\mathbf{p})$, or $\phi^*(-\mathbf{p})$? Justify your answer.

12. Time reversal symmetry of non-degenerate states 2+3 Punkte

Consider a spinless particle bound to a fixed centre by a potential $V(\mathbf{x})$ so asymmetrical that no energy levels are degenerate.

(a) Using time-reversal prove that

$$\langle \mathbf{L} \rangle = 0$$
.

for any energy eigenstate. Here \mathbf{L} is the orbital angular momentum.

(b) Assume now that the wavefunction is expanded as

$$\sum_{l} \sum_{m} F_{lm}(r) Y_{l}^{m}(\theta, \phi),$$

where $Y_l^m(\theta, \phi)$ are the spherical harmonics. What kind of phase restrictions do we obtain on $F_{lm}(r)$?

13. Spin 1 system

3+2 Punkte

The Hamiltonian for a spin 1 system is given by

$$\hat{H} = A\hat{S}_z^2 + B(\hat{S}_x^2 - \hat{S}_y^2),$$

where the S_i are spin operators.

- (a) Find the normalised energy eigenstates and eigenvalues.
- (b) Is the Hamiltonian invariant under time reversal? How do the normalised eigenstates you calculated in part (a) transform under time reversal?

14. Time reversal of a lattice Hamiltonian

3+3+2 Punkte

In this problem we will consider the effects of time reversal on a lattice Hamiltonian.

- (a) First consider the lattice translation operator $\hat{T}_a = e^{-i\hat{p}a/\hbar}$. How does the eigenvalue of the translation operator change when a momentum eigenstate $|p\rangle$ is transformed to its time-reversed state $\hat{\theta}|p\rangle$?
- (b) Now consider the Hamiltonian

$$H(\mathbf{k}) = A_x \sin(k_x a)\sigma_x + A_y \sin(k_y a)\sigma_y + M\sigma_z,$$

where $\hbar k_x$ and $\hbar k_y$ are components of the momentum appearing in the eigenvalues of the translation operator, a is the lattice constant, and A_x , A_y and M are constants. How does this Hamiltonian transform in the time-reversal symmetry transformation in the case where σ are (i) spin matrices and (ii) the type of "orbital" matrices (sublattice degree of freedom) considered in the problem on the SSH model? If $H(\mathbf{k})$ obeys time-reversal symmetry, what are the consequences for the coefficients A_x , A_y and M in both cases.

(c) Generalise your result to a Hamiltonian of the form $H(\mathbf{k}) = \mathbf{d}(\mathbf{k}) \cdot \sigma$.