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Abgabe: The problem set will be discussed in the tutorials on Thursday, 02.11.2017, 11:00
(German) and Friday, 03.11.2017, 13:30 (English).

8. Eigenspinors 4+1 Punkte

Consider a spin 1/2 system in the presence of an external magnetic field B = Bn̂, where n̂ is a
unit vector pointing in an arbitrary direction. The Hamiltonian of this system is given by

Ĥ = − e

mc
Ŝ ·B,

where e is the electron charge, m is the electron mass, c the speed of light, and Ŝ the vector of
spin 1/2 operators.

(a) Calculate the eigenvalues and normalised eigenspinors of the Hamiltonian.

(b) Why does the direction of the eigenspinors only depend on n̂?

9. Time- and spin-reversal 2+3 Punkte

(a) Denote the wavefunction of a spinless particle corresponding to a plane wave in three
dimensions by ψ(x, t). Show that ψ∗(x,−t) is the wavefunction for the plane wave if the
momentum direction is reversed.

(b) Let χ(n̂) be the eigenspinor calculated in the previous problem for eigenvalue −e~B/(2mc).
Using the explicit form of χ(n̂) in terms of the polar and azimuthal angles which define n̂,
verify that the eigenspinor with spin direction reversed is given by −iσyχ∗(n̂).

10. Nearly free electron model 3+2+2+3 Punkte

Consider a particle in a periodic potential with lattice vectors Ri i.e. U(x + Ri) = U(x). For
such problems it is useful to write the periodic potential as a Fourier series

U(x) =
∑
G

UGe
iG·x,

where G are reciprocal lattice vectors satisfying eiG·Ri = 1. We expand the wavefunctions in
terms of a set of plane waves which satisfy the periodic boundary conditions of the problem

ψ(x) =
∑
k

cke
ik·x.
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(a) Using the expansions above, show that the Schrödinger equation

[
−~2∇2

2m
+ U(x)

]
= Eψ(x),

can be written as

(
~2k2

2m
− E

)
ck +

∑
G

UGck−G = 0.

(b) Perform the shift q = k+K, where K is a reciprocal lattice vector which ensures that we
can always find a q which lies in the first Brillouin zone1 , and show that the Schrödinger
equation now gives

(
~2

2m
(q−K)2 − E

)
cq−K +

∑
G

UG−Kcq−G = 0.

(c) Consider for concreteness a one-dimensional chain, but in the simple case where only the
leading Fourier component contributes to the potential

U(x) = 2U0 cos
2πx

a
.

Explain how your result in (b) can be used to calculate the energy of the system.

(d) Suppose now that U0 is very small. Near k = π/a the Schrödinger equation reduces to

(
~2
2m

(
k − 2π

a

)2 − E U0

U0
~2k2
2m − E

)(
ck−2π/a

ck

)
= 0.

Calculate and plot the energy eigenvalues. What happens at k = π/a?

1As an example of a Brillouin zone consider the simple cubic lattice with sides of length a. The lattice vectors
can be written as R1 = ax̂, R2 = aŷ, and R3 = aẑ. In reciprocal space the basis vectors become b1 = 2π

a
x̂,

b2 = 2π
a
ŷ, and b3 = 2π

a
ẑ. In this case the first Brillouin zone is the region −π/a ≤ ki ≤ π/a (i = x, y, z). The

reciprocal lattice vectors can be written as K =
∑
i nibi (ni ∈ Z). Therefore, for arbitrary k it is possible to find

q = k + K so that q lies in the first Brillouin zone.
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