Prof. Dr. B. Rosenow Dr. C. Drukier Dr. T. Hyart

Quantum Mechanics 2 - Problem Set 2

Wintersemester 2017/2018

Abgabe: The problem set will be discussed in the tutorials on Thursday, 26.10.2017, 11:00 (German) and Friday, 27.10.2017, 13:30 (English).

5. Translation Operator

Consider a free particle with Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m},$$

and define the translation operator \hat{T}_l .

- (a) Show that $[\hat{H}, \hat{T}_l] = 0$.
- (b) Due to the result in (a), the Hamiltonian and translation operator have a common set of eigenstates. For such a state $|k\rangle$, calculate the eigenvalue of \hat{T}_l . That is calculate λ_k in the expression $\hat{T}_l|k\rangle = \lambda_k |k\rangle$.

6. Landau levels

A spinless particle of charge q is confined to the x - y plane and subjected to a magnetic field in the z-direction, $\mathbf{B} = (0, 0, B)$.

(a) Using the Landau gauge $\mathbf{A} = (0, Bx, 0)$ show that the Schrödinger equation can be written as

$$\frac{-\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \left(\frac{\partial}{\partial y} - i \frac{qB}{\hbar} x \right)^2 \right) \Psi(x, y) = E \Psi(x, y).$$

Hint: You may wish to first calculate the canonical momentum of the classical system.

(b) Show that the solutions of the Schrödinger equation above can be written as $\Psi_{n,k}(x,y) = e^{iky}u_n(x-a_k)$, and find an expression for a_k in terms of k. How does $u_n(x-a_k)$ look like? Explain why the energy eigenvalues are given by

$$E_n = \frac{\hbar q B}{m} \left(n + \frac{1}{2} \right), \qquad n = 0, 1, 2, \dots$$

1+1 Punkte

3+3+3 Punkte

(c) The particles are now confined to an area so that $0 \le x \le X$ and $0 \le y \le Y$. Assume periodic boundary conditions $\Psi(y) = \Psi(y+Y)$ in the y-direction, so that k takes discrete values $k_N = 2\pi N/Y$ $(n = 0, 1, 2, ..., N_{\text{max}})$. Calculate N_{max} per unit area.

Hint: Notice that because of the confinement $0 \le a_{k_N} \le X$.

The physical meaning of this result is that each Landau level with energy E_n has a large degeneracy N_{max} proportional to the area of the sample.

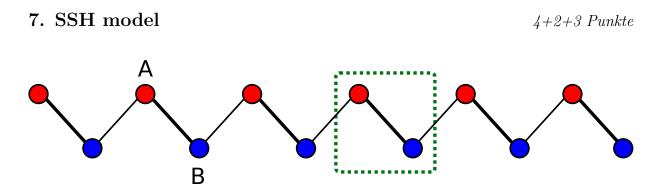


Figure 1: The SSH model. The red and blue circles symbolise different types of sites. The thin lines denote couplings with strength $t(1 - \delta)$ whilst the thick lines are couplings with strength $t(1 + \delta)$. The dashed square denotes a unit cell.

In this problem we consider the Su-Schrieffer-Heeger (SSH) model which describes spinless fermions hopping on a one-dimensional lattice with staggered hopping amplitudes (see the figure). The model contains two sub-lattices, A and B and has the following Hamiltonian

$$H = \sum_{n} t(1+\delta)|n,A\rangle\langle n,B| + t(1-\delta)|n+1,A\rangle\langle n,B| + \text{h.c.}.$$

Here h.c. stands for hermitian conjugate and $|n, A\rangle$ describes a state of site n, in sublattice A. t and δ are taken to be real parameters.

(a) By Fourier transforming, $|n\rangle = \frac{1}{\sqrt{N}} \sum_{k} e^{-ink} |k\rangle$, show that the Hamiltonian can be written as $H(k) = \mathbf{d}(k) \cdot \sigma$, where σ is the vector of Pauli matrices, and $d_x(k) = t(1+\delta) + t(1-\delta) \cos(k)$, $d_y(k) = t(1-\delta) \sin(k)$, and $d_z(k) = 0$.

Hint: Write the wave-function as a vector with two components describing the amplitudes on the A and B sublattices respectively.

- (b) Calculate the energy eigenvalues of the system.
- (c) Plot your result from (b) for $\delta > 0$ and $\delta < 0$. What happens when $\delta = 0$?