Summer Semester 2024
Due: \quad The problem set will be discussed in the tutorial on Friday, 10.05.2024, 13:30.
Internet: The problem sets can be downloaded from
https://home.uni-leipzig.de/stp/QFT_of_MPS_SS24.html

1. Gaussian integrals

In this problem we will consider different generalisations of the standard Gaussian integral.
(a) To begin with show that

$$
\int_{-\infty}^{\infty} d x e^{-\frac{1}{2} a x^{2}}=\sqrt{\frac{2 \pi}{a}}
$$

where $\operatorname{Re} a>0$.
(b) Generalise the above integral by adding a so-called source term in the exponent. That is calculate

$$
\int_{-\infty}^{\infty} d x e^{-\frac{1}{2} a x^{2}+J x}
$$

(c) Now let \boldsymbol{x} and \boldsymbol{J} be N-dimensional real vectors, and let A be an $N \times N$ matrix. Show that the multi-dimensional analogues of the integrals in parts a and b become

$$
\int d \boldsymbol{x} e^{-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}}=(2 \pi)^{N / 2} \operatorname{det} A^{-1 / 2}
$$

and

$$
\int d \boldsymbol{x} e^{-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{J}^{T} \cdot \boldsymbol{x}}=(2 \pi)^{N / 2} \operatorname{det} A^{-1 / 2} e^{\frac{1}{2} \boldsymbol{J}^{T} A^{-1} \boldsymbol{J}} .
$$

(d) What are the analoguous expressions if \boldsymbol{x} and \boldsymbol{J} are complex vectors and A is a complex matrix?

2. Wick's theorem

In this problem we will derive a version of Wick's theorem which plays an important role in quantum field theories. To do this let \boldsymbol{x} be an N-dimensional real vector and let A be an $N \times N$ matrix. Furthermore define the "expectation value"

$$
\langle\cdots\rangle=\frac{\int d \boldsymbol{x}(\cdots) e^{-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}}}{\int d \boldsymbol{x} e^{-\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}}}
$$

(a) Using the results from the previous problem, or otherwise, show that

$$
\left\langle x_{i} x_{j}\right\rangle=A_{i j}^{-1}
$$

where x_{i} is the i-th element of \boldsymbol{x} and $A_{i j}^{-1}$ is the $i j$-th element of the matrix A^{-1}.
(b) Likewise show that

$$
\left\langle x_{i} x_{j} x_{n} x_{m}\right\rangle=A_{i j}^{-1} A_{n m}^{-1}+A_{i n}^{-1} A_{j m}^{-1}+A_{i m}^{-1} A_{j n}^{-1} .
$$

(c) Generalise the above to the product of $2 n$ elements of \boldsymbol{x}.

3. Equation of motion for the Green function of an interacting system

(a) Define the time-ordering operator T for a fermionic and a bosonic system.
(b) Consider the following Hamiltonian in second quantization,

$$
\begin{aligned}
H-\mu N & =\int d^{3} r \psi^{\dagger}(\boldsymbol{r}) \epsilon(\boldsymbol{r}) \psi(\boldsymbol{r}) \\
& +\frac{1}{2} \int d^{3} r \int d^{3} r^{\prime} \psi^{\dagger}(\boldsymbol{r}) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right) V\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \psi\left(\boldsymbol{r}^{\prime}\right) \psi(\boldsymbol{r}),
\end{aligned}
$$

where $\epsilon(\boldsymbol{r})=-\frac{\hbar^{2}}{2 m} \nabla_{r}^{2}+U(\boldsymbol{r})-\mu$ represents the one-particle contribution to the Hamiltonian, and $V\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)$ is a two-body interaction. Using the Heisenberg equation of motion $\hbar \dot{\psi}(\boldsymbol{r}, t)=i[H, \psi(\boldsymbol{r}, t)]$ for the (either fermionic or bosonic) field operator $\psi(\boldsymbol{r}, t)$, show that the time-ordered Green function $G\left(\boldsymbol{r}, t ; \boldsymbol{r}^{\prime}, t^{\prime}\right)=-i\left\langle T \psi(\boldsymbol{r}, t) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\right\rangle$ obeys the following equation of motion

$$
\begin{aligned}
{\left[i \hbar \frac{\partial}{\partial t}-\epsilon(\boldsymbol{r})\right] G\left(\boldsymbol{r}, t ; \boldsymbol{r}^{\prime}, t^{\prime}\right) } & =\hbar \delta\left(t-t^{\prime}\right) \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \\
& -i \int d^{3} r^{\prime \prime} V\left(\boldsymbol{r}-\boldsymbol{r}^{\prime \prime}\right)\left\langle T \psi^{\dagger}\left(\boldsymbol{r}^{\prime \prime}, t\right) \psi\left(\boldsymbol{r}^{\prime \prime}, t\right) \psi(\boldsymbol{r}, t) \psi^{\dagger}\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\right\rangle .
\end{aligned}
$$

Hint: The following identity for commutators may be useful:

$$
[A B, \psi]=A[B, \psi]_{ \pm} \mp[A, \psi]_{ \pm} B .
$$

