Statistical Physics, Spring 2011

Problem Set 9

Course Information:
Class times: lectures Monday and Thursday, 11:00-12:30 in SR 218, tutorials Friday, 9:15-10:45 in SR 221

Final exam: July 11, 13:30 in ThHS
The course website is www.uni-leipzig.de/~stp/Statistical_Physics.html

Problem 27: Two component gas (6 Marks)
A gas is composed of two types of particle, which differ only in their mass. (eg. two isotopes of one atom). N_{1} particles have mass m_{1} and N_{2} have mass m_{2}. All particles are classical and non-interacting. We have

$$
\mathcal{H}(\mathbf{x})=\sum_{i=1}^{N_{1}} \frac{p_{i}^{2}}{2 m_{1}}+\sum_{i=N_{1}+1}^{N_{1}+N_{2}} \frac{p_{i}^{2}}{2 m_{2}} .
$$

The gas is at temperature T in the volume V.
(a) Calculate the canonical (Helmholtz) free Energy $F\left(T, V, N_{1}, N_{2}\right)$. Verify the homogeneity relations $F\left(T, \lambda V, \lambda N_{1}, \lambda N_{2}\right)=\lambda F\left(T, V, N_{1}, N_{2}\right)$.
(b) The Gibbs free energy is given by the Legendre transformation of the free energy with respect to the conjugate pair P, V, such that $G=F+P V$. Perform the Legendre transformation to obtain the Gibbs free energy $G\left(T, p, N_{1}, N_{2}\right)$. What does the homogeneity relation look like for G ?
(c) Derive from the homogeneity relation for F, the Gibbs-Duhem-Relation $G\left(T, p, N_{1}, N_{2}\right)=\mu_{1} N_{1}+\mu_{2} N_{2}$.

Problem 28: Gas from distributed particles (5 Marks)
We consider N classical rods of length l in a one-dimensional volume of length $L \geq N l$. The interaction potential of two particles at the centre of mass positions x_{i} and x_{j} is

$$
\Phi\left(x_{i}-x_{j}\right)= \begin{cases}\infty & \left|x_{i}-x_{j}\right| \leq l \\ 0 & \text { otherwise }\end{cases}
$$

The particles can not overlap, and cannot swap locations.
Calculate the entropy and the equation of state $p(T, L, N)$ of the system. What does the equation of state look like in the thermodynamic limit $N, L \rightarrow \infty$ with $n=N / L$ constant?

Problem 29: Extremity Property of J (5 Marks)
Show explicitly, that the grand canonical distribution, among all distributions with equal temperature, and equal chemical potential, has the smallest grand canonical potential, i.e

$$
J^{\prime} \geq J \quad \text { for } \quad T=T^{\prime}, \quad \mu=\mu^{\prime}
$$

