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Statistical Physics, Spring 2011

Problem Set 3

Course Information:

+ Class times: lectures Monday and Thursday, 11:00-12:30 in SR 218,
tutorials Friday, 9:15-10:45 in SR 221

+ Final exam: July 11, 13:30 in ThHS

+ The course website is www.uni-leipzig.de/˜stp/Statistical Physics.html

+ In the tutorials you will be expected to present solutions to the class
on a volunteer basis. Before each class please decide whether you would
like to present any particular problem. If nobody volunteers you may
be asked to present. The purpose of this is to gain experience working
through problems as a group. Therefore it is informal and need not cause
concern. In particular, please do not skip a class because you could not
complete the problem set. These are the classes you most need to attend!

+ For questions regarding the problem sets, please email Tony at
anthony.wright in the uni-leipzig.de

ε

8. Expansion of a gas (2+1+1 Marks)
N indistinguishable classical particles form an ideal gas in the volume V. Each atom has a mo-
mentum in the range pmin < |p| < pmax.

The macro-state is defined by separating the volume of the container B into m equally si-
zed sub-volumes, each containing some number of the total particles such that m << N . A cell
i of the µ-space contains the single particle states in the sub-volume i.

(a) Determine the cell phase-space volume ωi, and the entropy of the equilibrium state.

The container B is now joined to a second container B′. The 2m cells of the µ-space are now
defined. The particles return to equilibrium.

(b) What is the entropy of the gas the moment the container size is doubled, yet all particles
are still in B?

(c) What is the entropy of the gas after the particles have filled the doubled space and returned
to equilibrium?
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9. The continuum limit (4 Marks)
In the calculation of the particle fluctuations we can convert a sum to an integral by writing

〈(∆N)2〉 =

∑
N (∆N)2e∆S(N)/kB∑

N e
∆S(N)/kB

≈
∫
dN(∆N)2e∆S(N)/kB∫

dNe∆S(N)/kB

where ∆S(N) ≈ −kB c
2(∆N)2. Analyse when it is reasonable to take the continuum limit. You

may find the Poisson summation formula helpful:

∞∑
N−=∞

f(N) =

∫ ∞
−∞

dNf(N)
(
1 + 2

∞∑
k=1

cos(2πkN)
)

10. Maxwell Distribution (1+2+2+1+1+1 Marks)
This is a somewhat difficult but valuable exercise.
A classical nonrelativistic particle has energy ε(x) = 1

2mp
2 at the phase-space point x = (r,p).

A non-interacting gas of such particles resides in a container of volume V .

(a) In the lectures, the particle density n(x) = Ne−βε(x)/Z1h
3 was obtained with the method

of Lagrange-Multipliers. It is normalised only if the momentum integral spans all of R3.
At a given energy of the gas, E, |p| ≤ pmax =

√
2mE. Under what conditions is the

contribution from |p| < pmax negligible?

Next we will construct a rigorous derivation of n(x).

(b) Determine, for a single particle, the phase-space volume |Ω1(E)|dE for a state with energy
E ≤ ε(x) ≤ E + dE. Use |Ω1(E)| =

∫
d6x1δ(E − ε(x1)), where δ(z) is the Dirac-Delta

function, together with the relation∫
dzf(z)δ(g(z)) =

∑
ν

f(zν)

g′(zν)

Where zν are the set of solutions to g(z) = 0.

(c) Calculate now, by gradually adding individual particles, the N-particle phase-space volume
|ΩN (E)|dE for states with energy E ≤

∑N
i=1 ε(xi) ≤ E + dE. Using

|ΩN (E)| = ΠN
i (

∫
d6xi)δ(E −

N∑
i

ε(xi)),

identify |ΩN (E)|dE = |Γ(M(E,E + dE))| from exercise 4. Also useful is the recursion
relation

|ΩN (EN )| =
∫
dEN−1|Ω1(EN − EN−1)||ΩN−1(EN−1)|.

For the following it is not important to calculate numerical factors explicitly.

(d) Find the particle distribution in µ-space. For this you can pick out, for example, the N th

particle, and use

n(xN ) = N(ΠN−1
i=1

∫
dEi)δ(E −

N∑
i=1

ε(xi))/|ΩN (E)|.
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(e) Sketch n(x)/N for a small N (N = 1, 2, 3), at fixed energy εf per particle. How does n(x)
vary qualitatively with increasing N?

(f) Discuss n(x)/N in the large N limit. Compare your result with that obtained in the
lectures. Calculate the Lagrange multiplier β as a function of εf .

11. Fluctuations in an ideal gas (0 Marks)
This is an optional question worth no marks
Consider an ideal gas in three statistical cases: those with Boltzmann, Bose, and Fermi distribu-
tions. As in task 7, cells enumerated by i are given, and their occupation numbers ni fluctuate
around their most probable values Ñi.

(a) First, determine the entropy change upon change of occupation numbers for ∆Ni = Ni−Ñi

to second order in ∆Ni. Why does the linear term in ∆Ni disappear?

(b) Now, determine the mean occupation 〈Ni〉 in the cell.

(c) Calculate the average quadratic fluctuations, 〈(∆Ni)
2〉 with help from the Gaussian appro-

ximation given in lectures. When are these average quadratic fluctuations large or small?
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