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Statistical Physics, Spring 2011

Problem Set 2

Course Information:

+ Class times: lectures Monday and Thursday, 11:00-12:30 in SR 218,
tutorials Friday, 9:15-10:45 in SR 221

+ Final exam: July 11, 13:30 in ThHS

+ The course website is www.uni-leipzig.de/˜stp/Statistical Physics.html

+ In the tutorials you will be expected to present solutions to the class
on a volunteer basis. Before each class please decide whether you would
like to present any particular problem. If nobody volunteers you may
be asked to present. The purpose of this is to gain experience working
through problems as a group. Therefore it is informal and need not cause
concern. In particular, please do not skip a class because you could not
complete the problem set. These are the classes you most need to attend!

+ For questions regarding the problem sets, please email Tony at
anthony.wright in the uni-leipzig.de
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4. The Energy Shell (4 Marks)
The purpose of this question is to show that for a system with a large number of degrees of
freedom, the surface of the energy shell accounts for almost the entire volume of the phase space.
In a container of volume V are N non-interacting particles of mass m. The energy of this ideal
gas consists solely of kinetic energy. Each point ~X = (q, p) of the phase space represents a
microstate of the system. A macrostate M(E1, E2) corresponds to the set of all points in the
phase space where E1 ≤ H( ~X) ≤ E2.

(a) Calculate the Phase space volume |Γ(M(E1, E2))|.

(b) Calculate the phase space volume of the energy shell M((1 − ε)E,E) where 0 < ε < 1.
Express this result as a fraction of the total phase space volume of the sphere M(0, E).

5. Ising-Spin system (2+2 Marks)
The purpose of the next few questions is to demonstrate that for a system with a large number
of degrees of freedom, the equilibrium state and small fluctuations around it contains all possible
microstates except for a vanishingly small number of exceptions. This in turn tells us that the
ergodic principle is not a necessary assumption when we do statistical mechanics, but in fact
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that by considering all possible microstates, we are effectively considering the equilibrium case
plus small fluctuations about it, and all other states provide a negligible contribution to our cal-
culations.

A large class of physical systems have degrees of freedom which can take only two different
values. As a canonical example for this class, we consider the Ising model with degree of free-
dom S which can take the values S = ±1. These degrees of freedom can correspond to the
z component of a spin 1

2 particle, by Sz = ~S
2 . Another example would be the occupation in

any fermionic system, as the single-particle states in this case, n, can be shown to be given by
n = 1

2(1 + S). We label a microstate of the Ising system by Si = ±1 where i enumerate the
individual spins i = 1, . . . N . There are 2N other such states. The macrostate is defined by the
set of all possible states for a given total spin M =

∑
i Si. A macrostate with total spin M has

(N−M)/2 spins with S = −1 and (N+M)/2 spins with S = 1 (We shall insist that N is even).

(a) Determine the number W (M) of microstates for the macrostate with total magnetization
M . Check that the total number of microstates WN =

∑
M W (M) is equal to 2N .

(b) Find W (M) in the limit N �M � 1 with the help of Stirling’s formula (Gauss’ distribu-
tion).

6. Directed polymer (1+1+1+1+2 Marks)
In a simplified model, it is assumed that a molecular chain can only take the following states:
the atoms i = 0, 1, 2, · · · , N are at positions (xi, yi) of a square lattice (where xi and yi are
integers). The atom at the origin is fixed at the position x0 = y0 = 0, and the other atoms
are chained together such that xi − xi−1 = 1 and |yi − yi−1| = 1. This is the polymer in the
x-oriented direction which, for example, cannot form any loops. A sample polymer is shown in
the figure.

(a) Determine the total number of micro-states.

(b) A macrostate (N, y) is the set of all micro-states for which the end of the chain is at
yN = y. How many microstates W (N, y) has this macrostate?

(c) A macrostate (i, y) is defined by the position yi = y of the ith atom. What is the number
of microstates W (i, y) contained in this state? Also calculate y

W (i,y) .

(d) Now the macro state (i, y,N, y′) is defined by both the position yi = y of the ith atom
and yN = y′ of Nth atom. What is the number of respective microstates W (i, y,N, y′)

contained in this state? Also calculate
∑

y,y′
yy′

W (i,y,N,y′) .
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(e) Finally, calculate the typical deflection of the chain end yn =

(∑
y y

2W (N,y)∑
yW (N,y)

)1/2

.

Hint: to perform the sum, try using the “trick” y =
∣∣ d
dz z

y
∣∣
z=1

.

7. Boson Distribution (1+1+1+2 Marks)
Consider a system of non-interacting bosons, where the single-particle states are labelled by
ν ≥ 1, and have energy Eν . A micro-state of the system is then a function of the occupation
numbers of all single-particles nν ≥ 0.

In a coarse grained description, quasi-degenerate single-particles combine to form a group of
gi ≥ 1 particles, as shown in the figure. The energies εi and occupation numbers ni of the
groups are ε1 ≈ E1 ≈ E2 ≈ · · · ≈ Eg1 , ε2 ≈ Eg1+1 ≈ Eg1+2 ≈ · · · ≈ Eg1+g2 , etc., and
N1 = n1 + n2 + . . . ng1 , N2 = ng1+1 + ng1+2 + . . . ng1+g2 , and so on. A macrostate M of the
system is determined through the occupation numbers ni.

(a) Calculate the number of microstates W (N1, ..., ni, ...) of the macrostate M .

Note that in Task 3 part of this combinatorial problem has already been treated. Approach
this as Ni, gi � 1.

(b) The number of particles N =
∑

i ni and the energy E =
∑

i niεi are both given. Find
the occupation numbers ñi for the macro-state at which the largest number of microstates
exist.

Note that the method of Lagrange multipliers is useful here as you saw in the lectures.

(c) Find W (Ñ1 + ∆N1, ..., ñi + ∆ni, ...) as a function of δni = ni − ñi to second order in δni.

Use an expansion of W (Ñ1 + ∆N1, ..., ñi + δni, ...).

(d) Redo (a) - (c) for Fermions whose occupation numbers nν , can only take the values 0 or 1.
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