UNIVERSITÄT LEIPZIG Institut für Theoretische Physik Prof. Dr. B. Rosenow

Statistical Physics, Spring 2011 Problem Set 11

Course Information:

- Class times: lectures Monday and Thursday, 11:00-12:30 in SR 218, tutorials Friday, 9:15-10:45 in SR 221
- ☞ Final exam: July 11, 13:30 in ThHS
- The course website is www.uni-leipzig.de/~stp/Statistical_Physics.html

Problem 32: Ideal Fermions at low temperatures (4 Marks)

With the aid of the Sommerfeld-expansion, one can calculate various properties of fermions at low temperatures.

Calculate E(T, N, V) up to $O(T^2)$. Derive p(T, N, V) to $O(T^2)$ as well as $C_V(T, N, V)$ to O(T).

Problem 33: Specific heat of a solid (4 Marks)

We consider the Debye model which describes the contribution of lattice vibrations (phonons) to the specific heat of a solid. In this model, phonons (which have Bose statistics) with momentum \vec{p} and energy $\varepsilon_i(\vec{p}) = c_i |\vec{p}|$ can be considered, where c_i is the speed of sound. In an isotropic solid, there is one longitudinal phonon mode for each possible momentum (with sound velocity c_l), and two transverse modes (with velocity c_t). The phonon momentum is limited by the lattice constant a, such that the upper limit is $|\vec{p}| \leq h/a$.

Find the temperature dependence of the phonon contribution to the specific heat C_V in the limit of low temperature $(T \ll T_D)$, and high temperature $(T \gg T_D)$, where $T_D h \bar{c}/ak_B$ is the Debye temperature, and the \bar{c} is the mean speed of sound, $3\bar{c}^{-3} = c_l^{-3} + 2c_t^{-3}$.

Problem 34: Pauli-Paramagnetism (4 Marks)

In an external magnetic field B, the single particle energies $\epsilon_{\vec{p},\sigma}$ of conduction electrons differ according to the spin orientation $\sigma = \pm$ (ie. parallel or antiparallel to the field):

$$\epsilon_{\vec{p},\sigma} = \frac{1}{2m}\vec{p}^2 - \sigma\mu_{\rm B}B.$$

where $\mu_{\rm B} = \frac{|e|\hbar}{2mc}$ is the Bohr magneton. For the two spin orientations, this leads to different occupation numbers $\langle n_{\vec{p},\sigma} \rangle$ with the same chemical potential μ . Magnetization and susceptibility are defined by

$$M = \mu_{\rm B} \cdot (\langle N_+ \rangle - \langle N_- \rangle) \quad \text{with} \quad N_\sigma = \sum_{\vec{p}} n_{\vec{p},\sigma} \,, \qquad \chi = \chi(T,B) = \left. \frac{\partial M}{\partial B} \right|_{T,N}.$$

- (a) Show that $\chi(T,0) = N\mu_{\rm B}^2 \int_{-\infty}^{\infty} d\epsilon \rho'(\epsilon) n(\epsilon)$. The values on the right hand side for B = 0 are known from lectures. $\rho(\epsilon)$ is the single particle density of states, $n(\epsilon)$ is the Fermi distribution function at the chemical potential μ .
- (b) Develop, using the method given in the lectures, $\chi(T,0)$ up to and including $O(T^2)$. The total number of particles N is given, and note that μ is dependent on temperature. Obtain an explicit result for the case $\epsilon_{\vec{p}} = \frac{p^2}{2m}$.

Problem 35: Thermodynamic relations (8 Marks)

We consider a system of N identical particles. E, \overline{T}, V and μ are the energy, temperature, volume, and chemical potential, respectively. Prove the following relations:

$$\begin{pmatrix} \frac{\partial E}{\partial N} \end{pmatrix}_{T,V} = \mu - T \left(\frac{\partial \mu}{\partial T} \right)_{V,N}$$

$$\begin{pmatrix} \frac{\partial N}{\partial T} \end{pmatrix}_{V,\mu/T} = \left(\frac{\partial N}{\partial \mu} \right)_{T,V} \left(\frac{\partial E}{\partial N} \right)_{T,V} / T$$

$$\begin{pmatrix} \frac{\partial E}{\partial T} \end{pmatrix}_{V,(\mu/T)} = \left(\frac{\partial E}{\partial T} \right)_{V,N} + \left(\frac{\partial N}{\partial \mu} \right)_{T,V} \left(\frac{\partial E}{\partial N} \right)_{T,V}^2 / T$$

$$(1)$$

In addition, prove for systems with fixed particle number:

$$\begin{pmatrix} \frac{\partial E}{\partial V} \end{pmatrix}_T = T \begin{pmatrix} \frac{\partial S}{\partial V} \end{pmatrix}_T - p \\ \begin{pmatrix} \frac{\partial S}{\partial p} \end{pmatrix}_T = - \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_p \\ K_T - K_S = V \frac{T \alpha_p^2}{C_p} \\ \frac{C_p}{C_V} = \frac{K_T}{K_S}$$
 (2)

Where

$$C_{V} = \left(\frac{\partial E}{\partial T}\right)_{V} = T\left(\frac{\partial S}{\partial T}\right)_{V}$$

$$C_{p} = \left(\frac{\partial H}{\partial T}\right)_{p} = T\left(\frac{\partial S}{\partial T}\right)_{p}$$

$$\alpha_{p} = \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}$$

$$K_{T} = -\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}$$

$$K_{S} = -\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{S}$$
(3)