Statistical Physics, Spring 2011

Problem Set 10

Course Information:

Class times: lectures Monday and Thursday, 11:00-12:30 in SR 218, tutorials Friday, 9:15-10:45 in SR 221

Final exam: July 11, 13:30 in ThHS
The course website is www.uni-leipzig.de/~stp/Statistical_Physics.html

Problem 30: Bose-Condensation I (8 Marks)
The grand canonical potential of the ideal gas is

$$
J(T, \mu, V)=T \ln (1-z)-T \frac{V}{\lambda^{3}} g_{5 / 2}(z)
$$

where $z=e^{\mu / T}$ and $\lambda=h / \sqrt{2 \pi m T}$.
Calculate the entropy S and the specific heat C_{V} above and just below the point of Bosecondensation. Calculate the isothermal compressibility as a function of the specific volume near $v_{c}, v-v_{c} \ll v_{c} . v_{c}(T)=\lambda_{T}^{3} / \zeta(3 / 2)$ is the critical value of v where Bose-condensation begins.

If you got this right, then S is continuous on the condensation point and vanishes at $v=0$ $(T=0)$. The specific heat shows a jump in the first derivative at this point, and K_{T} diverges.

If one considers the region $v<v_{c}$ as a new phase (and not as a mixed phase of condensate and gas in excited states), then the Bose condensation is a second order phase transition. But if we consider the state in which all particles are assumed to be in the condensate as a new phase (due to the lack of repulsion, this state has specific volume $v=0$), then the Bose condensation is a first order isothermal phase transition.

Show that the formula for the pressure $p(T)=\left[\zeta(5 / 2) / \hbar^{3}\right](2 \pi m)^{3 / 2}\left(k_{B} T\right)^{5 / 2}$ of the Bose gas with partial condensation at $T_{c}(v)$ satisfies the Clausius-Clapeyron equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} T}=\frac{\Delta S}{\Delta V} .
$$

Where V is the volume of the condensate, $V=N v_{c}$.
Note: $g_{3 / 2}(z) / g_{3 / 2}(1) \approx 1-1.36 \sqrt{1-z}+O(1-z)$, where $g_{\alpha}(z)=\sum_{n=1}^{\infty} n^{-a} z^{n}$. Hint: Remember that below the condensation point (ie. $T<T_{c}$ and $v<v_{c}$), $z=1$. Use the expansion of $g_{3 / 2}(z)$ to get the entropy above the condensation point.

Problem 31: Bose Condensation II (4 Marks)
For an ideal gas of N bosons at $T=T_{c}$, the following properties hold:

$$
\begin{aligned}
\frac{\left\langle n_{0}\right\rangle}{N} & =\Psi_{3 / 2}(z) \\
z & =\frac{\left\langle n_{0}\right\rangle}{1+\left\langle n_{0}\right\rangle} \\
\Psi_{3 / 2}(1-\delta) & =1.36(1-\delta)[-\ln (1-\delta)]^{1 / 2}+\delta+0.38(1-\delta) \ln (1-\delta)+\mathcal{O}\left(\delta^{2}\right)
\end{aligned}
$$

for $0 \leq \delta \ll 1$.
Show that for large $N,\left\langle n_{0}\right\rangle \approx 1.22 N^{2 / 3}$ holds.

Calculate $\langle\alpha\rangle$ for large N and excited states α.

Problem 32: Ideal Fermions at low temperatures (4 Marks)
With the aid of the Sommerfeld-expansion, one can calculate various properties of fermions at low temperatures.

Calculate $E(T, N, V)$ up to $O\left(T^{2}\right)$. Derive $p(T, N, V)$ to $O\left(T^{2}\right)$ as well as $C_{V}(T, N, V)$ to $O(T)$.

