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Statistical Physics, Spring 2011

Problem Set 1

Course Information:

+ Class times: lectures Monday and Thursday, 11:00-12:30 in SR 218,
tutorials Friday, 9:15-10:45 in SR 221

+ Final exam: July 11, 13:30 in ThHS

+ The course website is www.uni-leipzig.de/˜stp/Statistical Physics.html

+ In the tutorials you will be expected to present solutions to the class
on a volunteer basis. Before each class please decide whether you would
like to present any particular problem. If nobody volunteers you may
be asked to present. The purpose of this is to gain experience working
through problems as a group. Therefore it is informal and need not cause
concern. In particular, please do not skip a class because you could not
complete the problem set. These are the classes you most need to attend!

+ For questions regarding the problem sets, please email Tony at
anthony.wright in the uni-leipzig.de

1. Poincare’s Recurrence Time (4 Marks)
This question is designed to show that the ergodic theorem is not a satisfactory basis for statistical
physics. The Poincare recurrence time you should obtain is extremely large even for a relatively
small number of particles (ie. orders of magnitude less than Avogadro’s number).

In an irregularly shaped box of volume V there is a gas of N non-interacting particles. Each
particle has mass m and the average velocity of a particle is v. The particles are elastically
scattered off the walls of the box in a random direction since the wall is irregularly shaped. The
box is therefore closed, so the total energy is a constant. Bear in mind that this restricts your
phase space volume.

(a) First consider a single particle initially at ~X = (~q, ~p) in phase space. Since we don’t know
the direction of reflection off the wall, we do not know the precise position of the particle
at any time. Estimate the time after which the particle returns to its initial position up
to a position and momentum uncertainty δq and δp respectively. Quantify this estimate
using V = 1cm3, δq = 10Å, δp = 10−2mv, and v = 13× 104cms−1.

(b) Estimate the time after which N = 2.7 × 1018 particles each return to their respective
starting points.

(c) Obtain an estimate for the age of the universe to get a feel for the length of time you
obtained in part (b).

The data used in part (a) is consistent with helium at 0oC.

1

http://www.uni-leipzig.de/~stp/Statistical_Physics.html


2. Distribution Functions (4 Marks)
There are several types of distribution function depending on, for example, the number of particles
and types of particles and the possible outcomes of a measurement. Here we will explicitly obtain
a few of these by standard combinatorial analysis.

Consider N particles distributed over g containers. Determine the distribution functions that
arise from the following cases:

(a) The particles are distinguishable and each container can fit any number of particles.

(b) The particles are distinguishable, but each container can fit at most a single particle.

(c) The particles are indistinguishable and each container can fit any number of particles.

(d) The particles are indistinguishable, but each container can fit at most a single particle.

The distributions obtained in (c) and (d) correspond, in quantum mechanics, to bosons and
fermions respectively.

3. Conservation of Phase Space Volume (4 Marks)
The purpose of this question is to demonstrate that the Hamiltonian, and not the Lagrangian, is
the convenient function to use in statistical mechanics.

Consider a particle with a speed dependent mass m = 2µ|ṙ|ν−2 in a potential V (r). Let the
constants µ > 0 and ν > 1. The Lagrangian of the particle is thus

L(r, ṙ) = µ|ṙ|ν − V (r).

(a) Derive the canonical momentum p, and the corresponding Hamiltonian H, thus showing
that in terms of the Hamiltonian, r and p are independent variables. Convince yourself
that this demands that ∂

∂r ṙ + ∂
∂p ṗ is zero in general. From the lectures we know that this

in turn is the condition that the volume of phase space spanned by r and p is a conserved.

(b) Now derive from L the Lagrangian equation of motion. Show that r̈ is a function of both r
and ṙ, which are now to be considered independent variables. Determine whether ∂

∂r ṙ+ ∂
∂ṙ r̈

vanishes in this case. Is the volume spanned by r and ṙ in this fluid-ensemble conserved in
this case?

We see from this example that, in general the phase space spanned by (q, p) is far preferable to
that spanned by (q, q̇).
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