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30. Series expansion I 3 Points

Determine the series expansion of the function f(z) = 1
1−z at an abitrary point z0 ∈ C \ {1} and

its radius of convergence.

31. Series expansion II 3 Points

Determine the series expansion of the function f(z) = 1
(z−1)(z−2) at the point z0 = 0 and its

radius of convergence.

32. Function with removable singularity 5+2 Points

The function

f(z) =

{
1 for z = π
π−z
sin(z) for z ̸= π

is holomorphic on Bπ(π) \ {π} =
{
z ∈ C

∣∣ |z − π| < π
}
\ {π}.

a) Show by using Morea’s theorem that the function is holomorphic on Bπ(π), i.e., it is also
holomorohic in π.
Hint: Argue that the integral over every closed contour that contains π can be obtained as the
limit ϵ → 0 from the integral over a key hole contour as it is shown in Fig. 1.
b) Determine the first two coefficients of the series expansion of f at z0 = π.

33. Holomorphic functions that are real on the real line 2 Points

Let f(z) be a function that is holomorphic on BR(0) =
{
z ∈ C

∣∣ |z| < R
}
.

Show that if f(z) is real for real z then it is f(z) = f(z) for all z ∈ BR(0).
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Figure 1: The key hole contour that can be used in 32 a). Every closed contour that contains π
can be cut open left of π where the curve intersects the real axis.
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