The algebraic structure of morphosyntactic features

Sebastian Bank
sebastian.bank@uni-leipzig.de
Department of Linguistics
University of Leipzig
Features in Phonology, Morphology, Syntax and Semantics
University of Tromsø/CASTL
Oktober 31–November 1, 2013

Introduction

Background: Features in morphological subanalysis

Present and past tense forms of German *spielen* ‘to play’

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>spiel-e</td>
<td>spiel-(e)n</td>
</tr>
<tr>
<td>2</td>
<td>spiel-s-t</td>
<td>spiel-t</td>
</tr>
<tr>
<td>3</td>
<td>spiel-t</td>
<td>spiel-(e)n</td>
</tr>
</tbody>
</table>

PRESENT

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>spiel-te</td>
<td>spiel-te-n</td>
</tr>
<tr>
<td>2</td>
<td>spiel-te-s-t</td>
<td>spiel-te-t</td>
</tr>
<tr>
<td>3</td>
<td>spiel-te</td>
<td>spiel-te-n</td>
</tr>
</tbody>
</table>

PAST

Some underspecified marker hypotheses

/-n/ ↔ [-2 +pl]
/-t/ ↔ [-1]

well-formed feature specification = natural class → **systematic syncretism**

Some feature decomposition for pronouns

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>+1-2-3-pl</td>
<td>-1+2-3-pl</td>
<td>-1-2+3-pl</td>
</tr>
<tr>
<td>PL</td>
<td>+1-2-3+pl</td>
<td>+1+2-3+pl</td>
<td>-1+2-3+pl</td>
</tr>
</tbody>
</table>

Two flavors of feature notations

Given a set of paradigm cells (utterances, contexts)
e.g.

{ 1SG, 1PL, 2SG, 2PL, 3SG.MASC, 3SG.FEM, 3SG.NEUT, 3PL }
or

{ 1SG, 1PL.EXCL, 1PL.INCL 2SG, 2PL, 3SG, 3PL }

Morphosyntactic feature specifications

Give formal representation for the meaning of each individual paradigm cell. Define which sets of paradigm cells correspond to more general meanings.

Feature-value pairs (Paradigm Function Morphology, Network Morphology)

{ PER:1, NUM:sg }, ... { PER:3, NUM:sg, GEN:neut }, ... { PER:3, NUM:pl }

Privative/binary features (Amorphous Morphology, Distributed Morphology)

[+1 -2 -pl], ...[-1 -2 -pl neut], ...[-1 -2 +pl]
Feature-value pairs

Features as orthogonal categories of mutually exclusive values

- **PER**: 1, 2, 3
- **INCL**: yes, no
- **NUM**: sg, pl
- **GEN**: masc, fem, neut

Cooccurrence restrictions

\[\{\text{PER:1}\} \subseteq X \lor \{\text{PER:2}\} \subseteq X \rightarrow \{\text{GEN:alpha}\} \neq X \]
\[\{\text{PER:1, INCL:yes}\} \subseteq X \rightarrow \{\text{NUM:pl}\} \subseteq X \]
\[\{\text{PER:1, NUM:sg}\} \subseteq X \lor \{\text{PER:3}\} \subseteq X \rightarrow \{\text{INCL:no}\} \subseteq X \]

Ordered attribute paths in DATR

\[\text{TNS} < \text{PER} < \text{NUM} \]
\[\langle \text{past 1 sg}>, \langle \text{present 3}>, \ldots \]

Privative/binary features

Feature decomposition

1. **EXCL** = [+1 -2] \quad **SG** = [-pl] \quad **MASC** = [masc] \quad **MASC** = [+m -f]
2. **INCL** = [+1 +2] \quad **PL** = [+pl] \quad **FEM** = [fem] \quad **FEM** = [-m +f]
3. **= [-1 +2] \quad **NEUT** = [neut] \quad **NEUT** = [-m -f]

Feature combinations

<table>
<thead>
<tr>
<th>sg</th>
<th>pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXCL = [+1 -2 -pl] 1PL.EXCL = [+1 -2 +pl]</td>
</tr>
<tr>
<td>12</td>
<td>1PL.INCL = [+1 +2 +pl]</td>
</tr>
<tr>
<td>2</td>
<td>2SG = [-1 +2 -pl] 2PL = [-1 +2 +pl]</td>
</tr>
<tr>
<td>3</td>
<td>3SG = [-1 -2 -pl] 3PL = [-1 -2 +pl]</td>
</tr>
</tbody>
</table>

Natural classes: syncretism vs. accidental homophony

15 possible assignments to a 4 cell paradigm

<table>
<thead>
<tr>
<th>Natural class syncretism</th>
<th>Elsewhere syncretism</th>
<th>Overlapping distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary features</td>
<td>cells</td>
<td>possible assignments</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>10,480,142,147</td>
</tr>
</tbody>
</table>

Features and their possible combinations

- restrict the sets of paradigm cells that can be part of **systematic syncretism**
- account for the fact that natural class syncretism is **more frequent** than expected if **learners** indistinctively internalized random form-identities

Formal Concept Analysis

Practical application of **order** and **lattice** theory (Birkhoff 1940) introduced by Wille (1982), elaborated in Ganter & Wille (1999).

Rests upon a Galois connection between two sets: a set of **objects** to describe and a set of **attributes** which each object either has or not (boolean flags).

Basic elements of Formal Concept Analysis (FCA)

- The **formal context** \((O,A,R) \) defines a relation between **objects** and **attributes**.
- The **derivation operator** \('r' \) yields **common attributes** for objects and **common objects** for attributes.
- The **concept lattice** \(L(O,A,R) \) defines the **relations** and **operations** on objects-attributes pairs.

Provides precise definitions, terminology, and graphical representations for the way feature notations are used (mostly implicitly) in linguistics.

Has many more practical applications, algorithms, software tools, etc., see http://www.upriss.org.uk/fca/fca.html
Formal context: defining a feature system

Context defines the relation between objects and attributes

Drop feature/value distinction: translate all values into privative features

<table>
<thead>
<tr>
<th></th>
<th>+1</th>
<th>2</th>
<th>3</th>
<th>+sg</th>
<th>+pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1pe</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1pi</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2s</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2p</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3s</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3p</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(O = \{ 1s, 1pe, 1pi, 2s, 2p, 3s, 3p \} \)
\(\mathcal{A} = \{ +1, -1, +2, -2, +3, -3, +sg, +pl \} \)
\(\mathcal{R} \subseteq O \times \mathcal{A} = \{ \{ 1s, +1 \}, \{ 1s, -2 \}, \ldots, \{ 3p, +pl \} \} \)

Dichotomic scale

<table>
<thead>
<tr>
<th>3.masc</th>
<th>3.fem</th>
<th>3.neut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>excl</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

Nominal scale

<table>
<thead>
<tr>
<th>very high</th>
<th>high</th>
<th>low</th>
<th>very low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ordinal scale

<table>
<thead>
<tr>
<th>positive</th>
<th>comparative</th>
<th>superlative</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Biordinal scale

| x | x | x | x |

Concept lattice: relations and operations

\(\langle O_1, A_1 \rangle \leq \langle O_2, A_2 \rangle \) when \(O_1 \subseteq O_2 \) (or equivalently \(A_1 \supseteq A_2 \))
Feature systems as context and lattice

Concept lattice, object concepts, attribute concepts

Relations and operations

\[[+1] \lor [-1] = \top \]
\[[+\text{sg}] \lor [+p1] = \top \]

\[[+1] \land [-1] = \bot \]
\[[+1] \land [+2] = \bot \]

\[[-1] \land [-3] \neq \bot \quad \text{and} \quad [-1]' \lor [-3]' = \top' \]

\[[+1 +\text{sg}] \lor [+2 +p1] = [-3] \quad \lor \{ [+1 +\text{sg}], [+2 +\text{sg}], [+2 +p1] \} = [-3] \]

\[[+1] \land [+\text{sg}] = [+1 +\text{sg}] \quad \land \{ [-2], [-3], [+\text{sg}] \} = [+1 +\text{sg}] \]

tautology, contradiction, implication, subcontrary, intersection, unification

Formal Concept Analysis

 Conjunctive normal form, boolean algebra

trivial, nominal scale

boolean algebra, 2

15 / 24
Syncretism, underspecification, and insertion competition

Present and past tense forms of English ‘to be’

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>am</td>
<td></td>
<td>1</td>
<td>was</td>
<td>were</td>
</tr>
<tr>
<td>2</td>
<td>are</td>
<td></td>
<td>2</td>
<td>were</td>
<td>were</td>
</tr>
<tr>
<td>3</td>
<td>is</td>
<td></td>
<td>3</td>
<td>was</td>
<td>were</td>
</tr>
</tbody>
</table>

Fully specified

\[
\text{am} \leftrightarrow [+1_{sg \text{prs}}] \\
\text{was} \leftrightarrow [-2_{-p1 \text{pst}}] \\
\text{were} \leftrightarrow [+1_{pl \text{pst}}] \\
\]

Natural class syncretism

\[
\text{is} \leftrightarrow [+3_{+sg \text{prs}}] \\
\]

Elsewhere syncretism

\[
\text{are} \leftrightarrow [\text{prs}] \\
\]

Insertion with Pāṇinian blocking (a.k.a. subset principle, elsewhere principle)

Insert the **most specific** marker(s) whose meaning subsume the paradigm cell meaning.

Insertion of were ↔ [pst]

\[
\{[-2_{-p1 \text{pst}}] \geq [+1_{+sg \text{prs}}] \}
\]

Insertion of were ↔ [pst]

\[
\{[-2_{-p1 \text{pst}}] \geq [+1_{+sg \text{prs}}] \}
\]

Markedness of extended exponence hypothesis

The utterance of a subsuming marker does not contribute information. It involves additional formal machinery (feature copying, rule blocks, contextual features, marker sensitivity, enrichment) and correspondingly is harder to learn.

Contextual feature solution (insertion as feature discharge, Noyer 1992)

discharged features / non-discharged features

No masked extended exponence with extensionalism

<table>
<thead>
<tr>
<th></th>
<th>sg</th>
<th>pl</th>
<th></th>
<th>sg</th>
<th>pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[+1_{-2_{-p1}}]</td>
<td>-e</td>
<td>1</td>
<td>[+1_{-2_{-p1}}]</td>
<td>-n</td>
</tr>
<tr>
<td>2</td>
<td>[-1_{+2_{-p1}}]</td>
<td>-n</td>
<td>2</td>
<td>[-1_{+2_{-p1}}]</td>
<td>-n</td>
</tr>
<tr>
<td>3</td>
<td>[-1_{-2_{-p1}}]</td>
<td>-n</td>
<td>3</td>
<td>[+1_{-2_{-p1}}]</td>
<td>-n</td>
</tr>
</tbody>
</table>

Does not interpret [-]insertion in 2SG as extended exponence (but might).

Requires that [-] ↔ [-1] is not a superconcept of [+1] ↔ [+2_{-p1}]. autonomy

But this requires that some paradigm cell is +2 and not -1. extensionalism

Extensionalist analysis

\[
\{2s, 2p, 3s, 3p\} \leftrightarrow \{[-1_{1\text{incl.aug}}], [-1_{1\text{incl.min}}] \}
\]

Contextual features solution

\[
\{[-1_{1\text{incl.aug}}], [-1_{1\text{incl.min}}] \}
\]

predicts functional pressure to change [-] into [-]

When markers resist blocking: extended exponence

Agreement affixes of Fox animate intransitive verbs (Bloomfield 1927)

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ne-</td>
<td>ne-</td>
<td>11</td>
<td>ke-</td>
<td>ke-</td>
</tr>
<tr>
<td>12</td>
<td>ke-</td>
<td>ke-</td>
<td>12</td>
<td>wa-</td>
<td>wa-</td>
</tr>
<tr>
<td>3</td>
<td>-pl</td>
<td>-pl</td>
<td>3</td>
<td>-pl</td>
<td>-pl</td>
</tr>
</tbody>
</table>

Extended exponence

\[
\text{wa} \leftrightarrow [+3] \geq [\text{g}]
\]

Markedness of extended exponence hypothesis

The utterance of a subsuming marker does not contribute information. It involves additional formal machinery (feature copying, rule blocks, contextual features, marker sensitivity, enrichment) and correspondingly is harder to learn.

Contextual feature solution (insertion as feature discharge, Noyer 1992)

discharged features / non-discharged features

No masked extended exponence with extensionalism

<table>
<thead>
<tr>
<th></th>
<th>sg</th>
<th>pl</th>
<th></th>
<th>sg</th>
<th>pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[+1_{-2_{-p1}}]</td>
<td>-e</td>
<td>1</td>
<td>[+1_{-2_{-p1}}]</td>
<td>-n</td>
</tr>
<tr>
<td>2</td>
<td>[-1_{+2_{-p1}}]</td>
<td>-n</td>
<td>2</td>
<td>[-1_{+2_{-p1}}]</td>
<td>-n</td>
</tr>
<tr>
<td>3</td>
<td>[-1_{-2_{-p1}}]</td>
<td>-n</td>
<td>3</td>
<td>[+1_{-2_{-p1}}]</td>
<td>-n</td>
</tr>
</tbody>
</table>

\([+2] \neq [-1] \text{ only if there is a } [+1_{1\text{incl.aug}}] \) cell
\([+2_{-p1}] \neq [-1_{+2_{-p1}}] \text{ only if there is a } [+1_{1\text{incl.aug}}] \) cell

However, such an inclusive/augmented reanalysis gives:

1. *Wir spiel-s.
 we play-1INC_MIN
2. *Wir spiel-e.
 we play-1INC_AUG
Why to avoid autonomous feature algebra?

- cannot replace extended exponence machinery altogether without undermining natural class restrictivity by adding features
- introduces superficially equivalent options (analytical ambiguity) of exploiting feature autonomy vs. using additional machinery
- results in less specific predictions making analyses harder to test
- why prefer a less restrictive theory when a more restrictive version has not yet been falsified?
- if the choice between [+2] and [-1 +2] is only indirectly observable, how can it be learned?
- is there independent evidence for such ‘morphomic’ features other than the distributional effects they have?

Impoverishment with or without autonomous features

Autonomy

\[
A \leftrightarrow [+3] \quad B \leftrightarrow [-1 -2 \text{ pst}]
\]

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PRESENT</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{pst} \rightarrow \emptyset / [+3 +\text{pl pst}]
\]

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PRESENT</td>
<td></td>
</tr>
</tbody>
</table>

\[
-1 -2 +3 \rightarrow \emptyset / [+3 +\text{pl pst}]
\]

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PRESENT</td>
<td></td>
</tr>
</tbody>
</table>

Extensionalist

\[
A \leftrightarrow [+3] \quad B \leftrightarrow [\text{pst}] / [+3]
\]

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td>PRESENT</td>
<td>PAST</td>
</tr>
</tbody>
</table>

\[
+3 \rightarrow \emptyset / [+3 +\text{pl pst}]
\]

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td>PRESENT</td>
<td>PAST</td>
</tr>
</tbody>
</table>

Impossible only retreat to the general case

Feature set subtraction in morphological operations

Feature set subtraction (Noyer 1992)

\[
\text{impoverishment} \& \text{ fission} (\text{Halle} / \text{Marantz} 1993)
\]

Impoverishment rule

\[
[\pm 1] \rightarrow \emptyset / [+\text{pl}]
\]

(Frampton 2002)

\[
[+3 +\text{pl}] - [+1] = [+3 +\text{pl}]
\]

\[
[+1 +\text{pl}] - [-1] = [+1 +\text{pl}]
\]

\[
[+3 +\text{pl}] - [-1] = [-2 +\text{pl}]
\]

\[
[+1 +\text{pl}] - [+1] = ? \quad \text{not} -2 \text{ or} -3
\]

\[
(-2 +\text{pl}, -2, +\text{pl}) \quad (-2 +\text{pl}, -3 +\text{pl}, +\text{pl})
\]

Impoverishment \leftrightarrow feature discharging \emptyset-insertion

(Trommer 1999, 2003)

Subtraction as \emptyset-insertion without autonomous features

\[
[+3 +\text{pl}] - [-1]
\]

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>3</td>
<td>ØA</td>
<td>ØA</td>
</tr>
</tbody>
</table>

\[
+3 +\text{pl}
\]

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>3</td>
<td>ØB</td>
<td>ØB</td>
</tr>
</tbody>
</table>

\[
-2 +\text{pl}
\]

<table>
<thead>
<tr>
<th></th>
<th>SG</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>3</td>
<td>ØA</td>
<td>ØA</td>
</tr>
</tbody>
</table>

Regarding subtraction as insertion without form-change

- makes various (possibly overly powerful) formalisms more restricted
- allows for a consistent information-based interpretation
Summary

Conclusion

- if features are more than abbreviations for observable distributional facts, even simple formalisms can acquire considerable power
- at least in some cases it is undesirable to use this extra power – not before there is evidence that it is really needed
- Formal Concept Analysis provides the terminology and the tools to spot and disassemble such ‘feature tricks’
- learnability might raise fundamental objections against them
- for the most part feature autonomy can be avoided by always using the most specific notational variant for representing feature sets

References