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We consider low-energy charge transport in one-dimensional electron systems with short-range interactions
under the influence of a random potential. Combining renormalization group and instanton methods, we
calculate the nonlinear ac conductivity and discuss the crossover between the nonanalytic field dependence of
the electric current at zero frequency and the linear ac conductivity at small electric fields and finite frequency.
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I. INTRODUCTION

In one-dimensional �1D� electron systems, the effects of
both interactions and random potentials are very pronounced,
and a variety of unusual phenomena can be observed.1,2

The linear dc conductivity shows a power law dependence
on temperature T at higher temperatures,3,4 but is exponen-
tially small at low temperatures and vanishes at zero
temperature.5,6 The ac conductivity vanishes like7

��2�ln�1/���2 and shows several crossovers to other power
laws at higher frequencies.8

Much less is known about the nonlinear conductivity. At
zero temperature and frequency charge transport is only pos-
sible by tunneling of charge carriers, which can be described
by instanton formation. The nonlinear dc conductivity is
characterized by9–12 I�exp�−�E0 /E� provided the system is
coupled to a dissipative bath. Without such a coupling, the
current was recently suggested to vanish below a critical
temperature.13,14

In this work, we calculate the low-energy nonlinear ac
conductivity for systems with random pinning potentials and
discuss the crossover between linear ac response at small
fields and nonlinear dc response at large fields. To be spe-
cific, we consider a charge density wave �CDW� or spinless
Luttinger liquid �LL� pinned by a random lattice potential
which can be described by the quantum sine-Gordon model
with random phases. We first scale the system to its correla-
tion length, where the influence of the potential is strong and
a semiclassical instanton calculation becomes possible. The
response is dominated by energetically low-lying two-level
systems �TLSs�, whose dynamics is described by a Bloch
equation.

Microfabrication of quantum wires or 1D CDW systems15

should allow us to test our predictions experimentally. In-
deed there are a number of recent experiments on carbon
nanotubes16–18 and polydiacetylene19 which seem to confirm
the variable-range hopping prediction for the dc conductivity
made in Refs. 10 and 11.

II. ac CONDUCTIVITY OF 1D DISORDERED SYSTEMS

In the following, we present a heuristic derivation of the
Mott-Halperin result7 for the ac conductivity of a one-
dimensional disordered electron system without interactions.
In the end of the section, we indicate how this result can be
generalized to interacting electrons.

In one spatial dimension, all electron states are localized
and wave function envelopes decay on the scale of the local-
ization length �loc. We divide the system into segments with
size �loc. The typical energy separation of states within one
segment is the mean level spacing �=1/ ��F�loc�, where �F is
the density of states at the Fermi level per unit length. Levels
in neighboring segments are coupled by the Thouless energy
t��loc�=�. When we consider the coupling between more dis-
tant segments of separation L the coupling is reduced to
t�L�=� exp�−L /�loc�. The coupling splits �almost� degener-
ate energy levels in different segments by an amount �E
=2t�L�. An external perturbation with frequency � causes
transitions between levels with a separation �E=��, hence
we demand 2t�L�=�� and therefore

Lx��� = �locln�2�/��� . �2.1�

According to Fermi’s golden rule, the transition rate for tun-
neling from a given state in one segment to states in a seg-
ment Lx��� away is given by 1/�= �2� /���t(Lx���)�2�F�loc.
By applying a voltage V=ELx��� between the two segments,
one couples e0V�F�loc levels in the first segment to states in
the second segment. The total current through a given site is
Lx��� /�loc times the current between two individual seg-
ments separated by a distance Lx���, and the linear conduc-
tivity is given by

�ac��� � �0Lx
2�������F�2, �0 =

e0
2

�
�loc. �2.2�

This result can be generalized to an interacting electron
system25 by remembering the basic idea of bosonization: the
charge density is defined as the derivative of a displacement
field, and a localized electronic state corresponds to a local-
ized kink in the displacement field. In addition, the density of
states �F at the Fermi level has to be replaced by the com-
pressibility 	=�� /�
. With these modifications, the above
derivation can be repeated and one obtains a result analogous
to Eq. �2.2�.

It is worthwhile to remark that the ac conductivity �2.2�
can be rewritten as

�ac��� � �0e−2Lx���/�loc	Lx���
�loc


2

. �2.3�

This result resembles the form of the result for the nonlinear
dc conductivity
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�dc�E� � �0
��e-ph

�
e−2Lx�E�/�loc	Lx�E�

�loc

2

. �2.4�

Here Lx�E�=�loc
�� /e0E0�loc denotes the spatial distance

of the energy levels between which the tunneling events take
place; it follows from a variational treatment.9,10 The prefac-
tor ��e-ph/e0E0�loc takes into account that the dissipation rate
is controlled by the typical frequency for electron-phonon
coupling �e-ph and that the current is hence of the order12

�e0�e-phe
−2L���/�loc.

Finally, at finite temperatures, Mott variable range hop-
ping gives a linear dc conductivity which follows from Eq.
�2.4� by replacing Lx�E� by Lx�T�=�� /kBT, i.e.,5

�dc�T� � �0
��ph

�
e−2Lx�T�/�loc	Lx�T�

�loc

2

. �2.5�

The crossover between the three expressions �2.3�–�2.5� can
most easily be understood by the dominance of a shortest
tunneling distance, as will be discussed further below.

III. THE MODEL

The models we analyze are defined by the Euclidean ac-
tion

S

�
=

1

2�K
� dx�

0

v��

dy�	 ��

�x

2

+ 	 ��

�y

2

− 2u cos�p� + 2�
�x�� +
2Ke0

�v
�E�y�
 +

Sdiss

�
,

�3.1�

where we have rescaled time according to v�→y, and �
=1/kBT. The dissipative part of the action describes a weak
coupling of the electron system to a dissipative bath, for
example phonons. It is needed for energy relaxation in
variable-range-hopping processes11 and for equilibration in
the presence of a strong ac field. We assume it to be so small
that it does not influence the renormalization group �RG�
equations for the other model parameters significantly. The
smooth part of the density is given by �1/���x�, and p=1,2
for CDWs and LLs, respectively. For a disordered CDW or
LL 
�x� is equally distributed in the interval �0,1� with cor-
relation length equal to the lattice spacing a.

For K�Kc�u� the potential is RG irrelevant and decays
under the RG flow, while for K�Kc�u� the potential is rel-
evant and grows; here3 Kc�0�=6/ p2. We assume K�Kc�u�
and scale the system to a length �=ael*, on which the poten-
tial is strong. After the scaling process, the parameters K, v,
and u in Eq. �3.1� are replaced by the effective, i.e., renor-
malized but not rescaled, parameters Keff, veff, and ueff.

We note that the ratio K /v and hence the compressibility
	=K /v�� is not renormalized due to a statistical tilt
symmetry.20 The compressibility 	=�� /�
 is used as a gen-
eralized density of states for interacting systems. Our calcu-
lations are valid for energies below the generalized mean
level spacing �0=1/	�.

In this RG calculation, we do not attempt to treat a pos-
sible nonlinear dependence of coupling parameters on the

external electric field. The full inclusion of the external field
in an equilibrium theory is not possible as it renders the
ground state of the system unstable. The quantum sine-
Gordon model has an infinite number of ground states con-
nected by a shift of the phase field by 2� / p. Here, we con-
centrate on renormalizing each of these ground states
separately and take into account the coupling between differ-
ent ground states due to the external electric field in the
framework of an instanton approach.

IV. INSTANTON CALCULATION

The wall width 1/�p2ueff�� of an instanton solution to
the action Eq. �3.1� is for weak external fields much smaller
than the extension of the instanton. Hence, the instanton ac-
tion can be expressed in terms of the domain wall position
X�y�. The discussion of instantons in the case of random
pinning is more involved than, e.g., for periodic pinning21

and the calculation of closed-form instanton solutions is not
possible. For this reason, we look for approximate instanton
solutions with a rectangular shape and extensions Lx and Ly
in x and y directions, respectively. As the disorder is corre-
lated in time but not in space, instanton walls in the x and y
directions contribute Lxsy and Lysx�x� to the action, respec-
tively. While the surface tension sy =2� / p2�Keff is essentially
constant, the surface tension sx has a strong and random po-
sition dependence. To calculate the statistical properties of sx,
we make use of the exact solution22 of the classical ground
state of a LL or CDW with random pinning in the following.

In the limit Keff�1, quantum fluctuations are strongly
suppressed and the �classical� ground state of the model Eq.
�3.1� can be determined exactly.10 After renormalization to
the scale �, the effective action can be rewritten as a discrete
model on a lattice with grid size �, and the integration over x
can be replaced by a summation over discrete lattice sites i
=x /�. In the classical ground state, the solution ��x ,y� does
not depend on y any more and the y integral in Eq. �3.1�
simply yields an overall factor veff��. Dividing the action by
��, one obtains the classical Hamiltonian10

Hclass =
�0

2�2 �
i=1

L0/�

���i+1 − �i�2 − 2�2ueffcos�p�i − 2�
i�� .

�4.1�

Here, ueff is the disorder strength with ueff �2�1 and 
i
� �0,1� is a random phase. In the effective Hamiltonian Eq.
�4.1�, the disorder term dominates the kinetic term and the
classical ground state of the system can be explicitly
constructed.22 One minimizes the cosine potential for each
lattice site by letting p�i=2��
i+ni

0� with integer ni
0. The set

of integers �ni
0� is chosen in such a way that the elastic term

in Eq. �4.1� is minimized,

ni
0 = m + �

i�j

�
i+1 − 
i�G. �4.2�

Here, �
�G denotes the closest integer to 
, and m is an inte-
ger parametrizing the infinitely many equivalent ground
states. Excitations of the ground state change ni

0→ni
0±1 for
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sites with i0� i� i0+Lx /�, they bifurcate from one ground
state characterized by m=m0 to another ground state with
m=m0±1. The potential energy necessary for a bifurcation at
position i is according to Eq. �4.1�

�H�i� =
�0

2�2 �2�/p�2
„1 ± 2��
i − 
i−1� − �
i − 
i−1�G�…

� �veffsygi �4.3�

with a random gi� �0,2�. Defining the localization length
�loc= p2Keff� /2�, one has sy =1/�loc.

Quantum effects are due to the time derivative in the ac-
tion Eq. �3.1� and give rise to tunneling between the ground
state and excited states in the presence of an external electric
field. Similar to the case of periodic pinning,21 these tunnel-
ing events are described by instantons. In the following, we
describe how the action of a quadratic instanton can be cal-
culated.

The action of a bifurcation with extension Ly is just
Hkink�i0�Ly /veff. The action of a wall with constant y and
length Lx can be calculated by an analogous consideration if
one introduces a lattice of grid size � in the y direction. As
the disorder is correlated in the time direction, one need not
consider random phases 
i and find an action �syLx. Adding
up the contributions from all four walls of an instanton, one
finds the action of a rectangular Lx�Ly instanton10

�S

�
= �sx�i0� + sx�i0 + Lx��Ly + 2syLx, sx�i� = sygi.

�4.4�

Pairs of sites with gi�1 correspond to energetically low-
lying excitations and form TLSs, which dominate the re-
sponse to an external electric field. Typically, the two lowest
gi in an interval of length Lx are of the order 1 /Lx, and the
boundaries of a typical instanton will be at positions with a
small surface tension sx�sy� /Lx. Taking into account the
contribution of a dc external electric field, the total action of
a typical instanton is

S�Lx,Ly�
�

= 2sy
�

Lx
Ly + 2syLx −

2e0E0

p�veff�
LxLy . �4.5�

Extremizing the action with respect to Lx ,Ly one finds10

Lx�E� =� 2�

p	e0E0
, Ly =

�

p	�e0E0
. �4.6�

The creation rate of these instantons is

Prandom � e−2Lx�E0�/�loc. �4.7�

Next we consider an ac field E�t�, which upon analytical
continuation it→� turns into a field E���. In imaginary time,
the electric field has to obey the same periodic boundary
condition E��+��=E��� as other bosonic fields, e.g., the dis-
placement field ����. This boundary condition is respected
by a discrete Fourier representation23

E��� = T�
�n

E��n�e−i�n�, �n =
n2�kBT

�
�4.8�

with Matsubara frequencies �n. A monochromatic external
field is hence described by E�y�=E0cos�̃ny, where time is
rescaled as y=veff� and frequency as �̃n=� /veff. In the end
of our calculation, we analytically continue Matsubara fre-
quencies to retarded real frequencies i�̃nveff→�+ i�.

Which type of instantons determines the current in the
presence of an ac field with period L�=2� / �̃n? In the limit
of a very small external electric field, the only external
length scale in the problem is the ac period L�, and the
contribution of typical instantons to the linear response can
be estimated by assuming that Ly has to be of order L�. A
typical instanton obtained from minimizing Eq. �4.5� with
respect to Lx for a fixed Ly =L� and for vanishing E0 has
Lx=��L�. For this solution, the current would be propor-
tional to exp�−�8� / p2��1+ i���0 /��� and vanish nonanalyti-
cally for small frequencies. However, according to the Mott-
Halperin law, the true frequency dependence should be
proportional to7 �2ln2�1/��. We conclude that typical instan-
tons do not yield the leading contribution to the current and
that a discussion of rare instantons is needed.

Indeed, besides typical instantons with sx�sy� /Lx, there
are rare instantons with an exceptionally low sx�i�+sx�i
+Lx�. Such a pair of sites i and i+Lx allows for the hopping
of a kink without changing the kink’s potential energy much.
The potential energy difference between two sites can be-
come arbitrarily small in sufficiently large samples. For the
following considerations, we will set it to zero in the sense
that it is much smaller than any other energy scale in the
system. In the discussion of the dc electric field, quantum
fluctuations, i.e., spontaneous creation of typical instantons
in the absence of an external field, were unimportant. For
pairs of sites with exceptionally low surface tensions, quan-
tum fluctuations are important and have to be taken into
account. Here, the spontaneous formation of instantons de-
scribes the physics of level repulsion.23 In our approximation
of vanishing sx, the instanton action does not depend on the
extension Ly in time direction any more, hence the occur-
rence of single domain walls of length Lx with constant y is
possible. Such a domain wall describes the hopping of a kink
across the distance Lx, and its action is

Ssingle/� = syLx. �4.9�

To obtain the partition function for this tunneling degree
of freedom, we must sum over all possible domain wall con-
figurations in the interval L�. A configuration with three hop-
ping events is displayed in Fig. 1. Summation over all pos-
sible configurations yields

Z�L�� = �
n=0

�
1

n!�i=1

n 	�
0

L� dyi

�Keff

e−nsyLx

= �
n=0

�
1

n!
	 L�

�Keff
e−syLx
n

= exp	 L�

�Keff
e−syLx
 .

�4.10�

The integration measures in the yi integrals are normalized
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by �Keff rather than by � because the short-time cutoff � /�0
is determined by the high-energy cutoff �0 and not by the
short-distance cutoff �. We note that the exponent of the
outer exponential function is positive, indicating a lowering
of the ground-state energy due to frequent tunneling between
the degenerate states. The summation over all possible in-
stanton configurations describes the quantum mechanical ef-
fect of level repulsion. Coupled energy levels repel each
other and are separated at least by

t0�Lx� = −
�veff

L�

ln Z�L�� = �0exp�− Lx/�loc� . �4.11�

The probability of having exactly one instanton �hopping
of a kink forth and back� within the time interval L� is given
by

p1�Lx� = e−2syLx/Z�L�� = exp	−
L�

�Keff
e−syLx − 2syLx
 .

�4.12�

The optimal length Lx for such an instanton is found by
minimizing the exponent in Eq. �4.12� with respect to the
tunneling length. We find

Lx =
1

sy
ln

L�

2�Keff
. �4.13�

Using this expression for Lx, we find the probability for hav-
ing exactly one instanton of length L�

p1 = e−2	2�Keff

L�

2

= 	 �̃n�Keff

e�

2

. �4.14�

This proportionality of the tunneling probability to frequency
squared is the essence of the Mott-Halperin conductivity Eq.
�2.2�.

With the knowledge of the probability Eq. �4.14� for an
instanton in resonance with the external field, we can now set
up a calculation of the ac current. It is calculated as a deriva-
tive I�x ,�n�=−��� /�a�x ,−�n��ln Z of the partition function
with respect to the vector potential a�x ,�n�=E�x ,�n� /�n.
The field � couples to the vector potential via

SE/� =
e0

��
� dx

1

�veff
�
�̃n

a�x,− �̃n��− �̃n���x,�̃n� ,

�4.15�

where � denotes the inverse temperature. Hence, the current
is given by

I�x,�̃n� = − e0�̃nveff

� D������̃n�e−S���/�

� D���e−S���

. �4.16�

In the low-energy regime, we do not perform the full
functional integral over � in order to evaluate the partition
function. Instead, we sum over the relevant tunneling de-
grees of freedom. We label such a degree of freedom by the
position i0 of the first weak link and by the distance Lx be-
tween the first and the second weak links. The field ��i0�
=��i0+1�= ¯ =��i0+Lx� takes the values �0 and �0

+2� / p, respectively. Furthermore, we make use of the self-
averaging properties of the current. Instead of averaging it
over the position x in the system and letting all different
types of TLSs contribute to it, we calculate the contribution
of one TLS and average over the parameters Lx, sx�i0�, and
sx�i0+Lx�. So far we considered instantons with vanishing
surface tension sx=0. We now extend these considerations to
instantons with surface energies smaller than ��, i.e., we are
concentrating on sites with gi�Keff��̃n, where sx�i0�
=syg1 ,sx�i0+Lx�=syg2. The probability that the position x,
for which we want to evaluate the current, is inside an active
instanton is Lx /� times the probability for finding a weak
tunneling link at a given site. In this way, we obtain for the
average current

�I���̃n� = − e0�̃nveff� dg1dg2
dLx

�

Lx

�
p1�Lx�

�� dy1

�Keff

dy2

�Keff
�0��̃n;y1,y2�e−SE��0�.

�4.17�

Here, we evaluate the current under the approximation that
there is exactly one instanton �two tunneling events at times
y1 and y2� in the interval of length L�. The two gi integrals
contribute a factor �Keff��̃n�2 as we neglect the dependence
of SE on the gi. The integral over Lx is evaluated by the
saddle point method just taking into account instantons of the
optimal length Lx= �1/sy�ln�L� /2�Keff�. As p1 is a function
of Lx /�loc, we have to use the same variable in the integration
measure to perform a saddle point approximation and obtain
a factor �loc /� from this transformation. If y1 is the time of
the first tunneling event and y2 the time of the second tun-
neling event, we define the new variables ỹ= �y1+y2� /2 and
Ly =y2−y1. The Fourier transform of the displacement field �
for such an instanton is given by

FIG. 1. Hopping of kinks from position i0 to i0+Lx /� and back
�full lines� in a time interval of length Ly. The lines parallel to the y
axis do not contribute to the action if the line tensions sx are
neglected.
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���̃n;Ly, ỹ� =
1

�
ei�̃nỹsin

�̃nLy

2
. �4.18�

For this field configuration, the coupling to the external elec-
tric field contributes the action

SE�Ly, ỹ�/� =
e0E0Lx

��veff

2

�̃n

sin��̃nỹ�sin��̃nLy/2� . �4.19�

The barrier size is not fixed by the electric field as in the dc
limit, and one has to consider both forward and backward
jumps as for the standard thermally assisted flux flow
argument.24 Hence, the probability for the instanton to be
in phase with the external field is given by
2 sinh�SE�L� ,Lx� /��. Expanding to linear order in SE and
integrating over LY and ỹ, we find for the current

�I���̃n� = − e0veff�̃n	 �̃n�Keff

e�

2

��̃n�Keff�2Lx

�

�loc

�

� �
0

L�/2 dỹ

�Keff
�

0

L� dLy

�Keff
���̃n;Ly, ỹ�

2SE�Ly, ỹ�
�

= −
8

e2

e0
2

�
�locLx

2�̃n
2Keff

2 E0. �4.20�

After the analytical continuation �̃nveff→−i� the real part of
the conductivity agrees with formula Eq. �2.2� up to a nu-
merical factor. As both �loc and Lx are proportional to Keff,
the conductivity contains a factor of Keff

5 in agreement with
the result.8,25

V. DESCRIPTION BY BLOCH EQUATION

The instanton calculation presented in the last section
needs to be improved upon in two respects: first, the classical
level separation parametrized by the gi was not fully taken
into account, and second, nonlinear corrections in the
strength of the external field are not considered yet. To
achieve these goals, we use the concepts developed in the
last section in a real-time quantum mechanical calculation.
Instantons in the imaginary-time formalism correspond to the
hopping of kinks from one level just below the chemical
potential to another level just above the chemical potential.
The localized states of a 1D disordered system can be mod-
eled by an ensemble of these TLSs, and the average proper-
ties of the system can be calculated by averaging over the
parameters of the TLSs.

We consider a TLS with spatial extension Lx and on site
energies �1 and �2 with �i=gi�0. The two sites are coupled
by a distance-dependent hopping integral t0�Lx� according to

Eq. �4.11�. Such a TLS is described by the Hamiltonian Ĥ

= Ĥ0+ ĤE with

Ĥ0 =
1

2
��1 + �2��z − t0�Lx��x, ĤE =

1

2
e0LxE0cos ��t��z.

�5.1�

The position of the tunneling kink is measured by the opera-

tor x̂= 1
2Lx�z, and the current operator is given by Î

=���1 ,�2 ,Lx�e0ẋ̂. Here,

���1,�2,Lx� =
1

�

d�1

�0

d�2

�0

dLx

�
�5.2�

denotes the spatial density of TLSs with given parameter

values. Ĥ0 is diagonalized by the unitary transformation

Ĥ → exp�i��y/2�Ĥexp�− i��y/2� �5.3�

with �=arctan�2t�Lx� / ��1+�2��. In the new basis, Ĥ0 corre-

sponds to a static field in the z direction, and ĤE to an oscil-
lating field with x component proportional to sin � and z
component proportional to cos �.

In principle, the transformed Hamiltonian should now be
solved in a nonequilibrium setup in a dissipative environ-
ment. In general, this type of problem is difficult to deal with
in full generality.26 However, the problem simplifies if one
does not treat an individual quantum system but averages
over a whole ensemble instead. Such an ensemble of TLSs or
spins interacting with an oscillatory electric field and subject
to relaxation processes can be described by Bloch
equations.27 We denote the ensemble polarization of the
TLSs in the transformed basis by the pseudospin vector p� .
The current I is then proportional to the the pseudospin com-
ponent in the y direction,

I = −
1

2
py���1,�2,Lx�e0Lx

t0�Lx�
�

. �5.4�

The pseudospin polarization p� of the TLSs follows the Bloch
equation

d

dt
p� = −

1

�0
�p� − p� 0� + �p� � E� . �5.5�

Here, E� = �E0sin���cos��t� ,0 ,2� /eLx+E0cos���cos��t��,
p� 0= �0,0 ,−1�, �=���1

2+�2
2� /4+ t0

2�Lx�, and �=e0Lx /�. In-
elastic processes are described by the phenomenological
damping constant �0.

The solution of Eq. �5.5� is described in detail in Ref. 27
and we do not reproduce it here. We find that to order O�E0

3�,
one type of TLS contributes to the conductivity,

�TLS��;�1,�2,Lx� =

���1,�2,Lx�
e0

2Lx
2t2�Lx�

2�2�

− i

� − 2�/� − i�/�0

�	1 −
1

�2�2

�e0LxE0t0�Lx��2

�� − 2�/��2 + 1/�0
2
 .

�5.6�

The reduction of the linear conductivity becomes effective
for strong ac fields, when both states of the TLS are occupied
with comparable probability. In order to calculate the con-
ductivity of the disordered sample, we integrate over all pos-
sible parameter values �1, �2, and Lx and obtain the final
result
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Re �ac��� = �0
�

4
Lx

2������	�2	1 − 2
e0

2Lx���2E0
2

�2/�0
2 


�5.7�

with the optimal tunneling length given by

Lx��� = �locln
2�0

��
. �5.8�

The linear part of Eq. �5.7� is proportional to Keff
5 and agrees

with the result of Fogler.8 This linear conductivity describes
the response of a disordered 1D system in region MH of Fig.
2. For an unscreened Coulomb interaction, in Eq. �5.7� one
factor of �� has to be replaced by28 e0

2 /�Lx���, where � is
the dielectric constant of the system.

When e0E0Lx����� /�0, higher-order terms become im-
portant and the ac current will saturate as a function of E0.
The value Es of the electric field where the current saturates
can be estimated from Eq. �5.7� as

Es =
�

e0�0Lx���
. �5.9�

As the nonlinear conductivity is defined as the ratio of cur-
rent and electric field, in the saturation regime one obtains

�ac��,E � Es� = �0
p

8
Lx�E�2Lx���

�

�

�0�0
���	�2.

�5.10�

The region in �-E space where the nonlinear conductivity
Eq. �5.10� can be observed is labeled MHS in Fig. 2.

VI. DISCUSSION

How does the linear conductivity Eq. �5.7� connect to the
creep current in strong fields? The calculation of the nonlin-

ear dc conductivity involves the optimal length scale Lx�E� in
Eq. �4.6� for tunneling processes. The crossover from ac to
dc conductivity takes place when the two length scales Lx���
and Lx�E� match, i.e., for a crossover frequency

�� =
�0

�
e−Lx�E0�/�loc. �6.1�

For ����, the magnitude of the creep current Icreep�
exp�−2Lx�E� /�loc� agrees with the magnitude of the ac cur-
rent described by the conductivity Eq. �5.7�, as the �2 term in
Eq. �5.7� matches the exponential dependence on field
strength of Icreep. Then, the expression Eq. �5.10� turns into

��E� = �0
p

8

�

�0�0

Lx�E�3

�3 e−2Lx�E�/�loc, �6.2�

providing us with an estimate of the prefactor of the expo-
nential factor describing dc creep. Identifying � /�0�0 as a
dimensionless measure for the dissipation strength, this esti-
mate agrees with a more sophisticated calculation, in which a
TLS is coupled to phonons with an Ohmic spectral
function.29

In the crossover region ���� between regimes QC and
MHS in Fig. 2, there are two different types of TLS contrib-
uting to the current. In the ground state of a typical TLS with
bare energy difference �1+�2��0� /Lx�E�� t�Lx�, most of
the charge is localized at one of the levels. Under the influ-
ence of an external field, the charge hops irreversibly from
one level to the other, as the hop is generally accompanied
by an inelastic process. On the other hand, the ground state
of a TLS with exceptionally low bare energy separation �1
+�2� t�Lx� is the even-parity combination of wave functions
centered around the individual levels, and absorption of a
photon excites the TLS to the odd-parity state.

In the quantum creep regime, the time dependence of the
current is calculated using the time-dependent field in the
formula for the dc current Icreep. The adiabatic regime �region
A in Fig. 2� is reached for frequencies smaller than the dc
hopping rate Icreep/e0. While the average current is stronger
than the current noise in the adiabatic regime, the current
noise is stronger than the current for Icreep/e0�����.

In summary, we have discussed the crossover from a non-
linear creep current in a static electric field to the linear ac
response in 1D disordered interacting electron systems.
While the linear ac conductivity is described by a general-
ized Mott-Halperin law, for stronger fields one finds a reduc-
tion of this linear conductivity as both states of a TLS are
occupied with comparable probability. The crossover be-
tween nonlinear ac conductivity and dc creep current occurs
when the spatial extension of TLSs matches the length scale
for tunneling of kinks.
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FIG. 2. Different transport regimes in a disordered CDW or LL
with dissipation as a function of field strength in units of Ethreshold

=�0 / pe0Keff�loc and frequency: adiabatic quantum creep in A,
quantum creep with increased current noise in QC, ac conductivity
following a Mott-Halperin law in MH, and Mott-Halperin law with
saturation for large field strengths in MHS.
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