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Large stock price changes: volume or liquidity?
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We analyse large stock price changes of more than five standard deviations for (i) TAQ data
for the year 1997 and (ii) order book data from the Island ECN for the year 2002. We
argue that a large trading volume alone is not a sufficient explanation for large price
changes. Instead, we find that a low density of limit orders in the order book, i.e. a
small liquidity, is a necessary prerequisite for the occurrence of extreme price fluctuations.
Taking into account both order flow and liquidity, large stock price fluctuations can be
explained quantitatively.
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1. Introduction

The existence of fat tails in the distribution of commodity
(Mandelbrot 1963) and stock price changes (Lux 1996,
Campbell et al. 1997, Gopikrishnan et al. 1998), together
with the relevance of these fat tails for the practical
problem of risk management, has spurred a large amount
of interest in the price process in financial markets. There
is evidence that the cumulative distribution function
of returns for both individual stocks and stock indices
decays as a power law with exponent around three
(Lux 1996, Gopikrishnan et al. 1998).

The idea of power law distributed returns is very
appealing as the appearance of a power law is reminiscent
of universality and critical phenomena, thus suggesting
that there might be a basic and universal mechanism
behind the distribution of price changes. Many phenom-
enological as well as microscopic models have been
developed that are able to explain the main stylized
facts concerning financial time series (Campbell et al.
1997, Takayasu 2002). However, so far there is no general
consensus concerning the mechanism behind extreme
price fluctuations in the tail of the distribution.

In order to understand the mechanism underlying
the empirically observed return distribution in detail,
one needs to study the price impact of trades. Besides
the influence of breaking news, stock prices change
if there is an imbalance between supply and demand.
If more people want to buy than to sell, stock prices
will move up, and if more people want to sell than to

buy, they will move down. This relation is quantified by
the price impact function (Hasbrouck 1991, Hausmann
et al. 1992, Kempf and Korn 1999, Evans and Lyons
2002, Hopman 2002, Plerou et al. 2002, Rosenow 2002,
Gabaix et al. 2003, Lillo et al. 2003, Potters and
Bouchaud 2003, Bouchaud et al. 2004), which describes
stock price changes as a conditional expectation value of
the order flow. The order flow is the difference between
the number of shares bought and the number of shares
sold in a given time interval.

Recently, Gabaix et al. (2003) suggested a quantitative
explanation for the power law distribution of returns.
They describe the cumulative distribution of order
flows within time intervals of a fixed length !t by a
power law with exponent !V ¼ 1:5. They model the
price impact function by a time-independent square
root function and use it as a predictor for stock price
changes. According to this argument, the exponent !G
of the cumulative return distribution is twice the exponent
!V of the order flow distribution. In this model, large
returns are exclusively caused by large order flows.

This approach was criticized by Farmer and Lillo
(2004) because the test for the square root relation
between order flow and returns presented by Gabaix
et al. (2003) lacks power in the presence of correlations
in the order flow and because the functional form used
to describe the price impact of large orders seems to vary
for different stock markets. Instead, Farmer et al. (2004)
conclude from a tick by tick analysis that large price
changes are due to the granularity of the order book,
which gives rise to a time varying liquidity.

The present study is a contribution to the discussion
concerning the origin of extreme returns. We present an*Corresponding author. Email: rosenow@thp.uni-koeln.de
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empirical study of extreme stock price changes within
time intervals of length !t ¼ 5min. We analyse data for
the 44 most frequently traded NASDAQ stocks contained
in the Trades and Quotes (TAQ) data base for the year
1997, which is published by the New York Stock
Exchange. In addition, we analyse the year 2002 of
order book data from the Island ECN for the ten most
frequently traded stocksy. For both data bases, we find
little evidence that price changes larger than five standard
deviations can be explained by an extreme order flow
alone. For the order book data, we are able to reconstruct
the price impact function for time intervals with large
price changes and find that large returns occur only in
times where the liquidity is below average. Large returns
are explained quantitatively when taking into account
both the order flow and the time-dependent slope of the
price impact function. Our analysis suggests that an unu-
sually small slope of the price impact function is a neces-
sary ingredient for the explanation of extreme stock price
changes.

The concept of market liquidity encompasses various
transactional properties of markets (Kyle 1985). Market
depth denotes the amount of order flow innovation which
is required to change prices a given amount. Resiliency
describes the speed with which prices recover from a
random uninformative shock, and tightness is the cost
for turning around a certain amount of shares within
a short period of time. Within a dynamic model of
insider trading and sequential auctions, Kyle (1985)
finds that both depth and volatility are constant in
time. Glosten (1994) discusses the equilibrium price
schedule in an open limit order book and its robustness
against destabilizing strategies. Intraday patterns in
price discovery and transaction cost are discussed in an
empirical study (Madhavan et al. 1997). Using a linear
parameterization for the price impact of individual trades,
a sharp drop of price impact after the first half trading
hour and a slight increase at the end of the trading day
are observed. A weak seasonality of the bid ask spread
and the average quote depth at the bid and ask price was
found by Chordia et al. (2001) when these liquidity
measures were averaged over a daily window. In addition,
liquidity is found to be influenced by contemporaneous
market returns, market trends, and market volatility. An
analysis of the limit order book of the Stockholm Stock
Exchange (Sandas 2001) shows that the depth calculated
from the order book is significantly smaller than what is
expected from a regression model. Similarly, a difference
between hypothetical and actual price impact (Coppejans
et al. 2002) is considered as evidence for discretionary
trading, i.e. large trades are more likely to be executed
when the order book has sufficient depth. Returns are
correlated with depth in the sense that rising prices
imply a liquidity increase on the offer side of the book
and vice versa for falling prices. Very recently, the
relation between volatility and liquidity was studied

for the Euronext trading platform (Beltran et al. 2004).
While in the framework of a two-state Markov switching
process the virtual price impact was found to increase
in the high volatility state, a dynamical analysis based
on a VAR model was not conclusive with respect to the
influence of volatility on liquidity.

In a study of the average price impact for the same data
set studied here, Weber and Rosenow (2003) found that
the virtual price impact calculated from the order book
depth is four times stronger than the actual one. The
difference between the two is accounted for by resiliency.
Due to the important contribution of resiliency, price
changes within time intervals of a finite length
!t ¼ 5min are more difficult to interpret than a study
on a tick by tick basis. On the other hand, the answer
to the question ‘‘how do stock prices change in a certain
time interval in response to a given order flow’’ is relevant
for the understanding of stock markets, which, after all,
operate in real time. Since the distribution of order sizes
follows a power law (Gopikrishnan et al. 2000), large
order flows are not the result of many small orders adding
up, but are rather due to a single large transaction. For
this reason, an analysis of intervals with fixed length
should be asymptotically correct when we are interested
in large orders.

In order to have a theoretical framework in which the
origin of price changes can be discussed, we set up a price
equation,

Si ¼ Si"1 þ ci þ "iQi þ ui, ð1Þ

in the spirit of Glosten and Harris (1988). Here, the
index i labels successive transactions at times ti, Si is the
transaction price, ci the transitory spread component, "t
the slope of the virtual price impact at time ti, and ui is a
white noise which describes the fact that prices change not
only due to trading, but also due to the arrival of new
public information. As we will mostly be concerned with
the analysis of midquote price changes in the empirical
section, we let ci & 0 in the following. For the price
change in an interval with a fixed length !t, one finds
(Foster and Viswanathan 1993)

Sðtþ!tÞ " SðtÞ ¼
X

ti2½t, tþ!t(
"tiQti þ

X

ti2½t, tþ!t(
uti : ð2Þ

We would like to mention that the price impact of an
order volume Qti according to equations (1) and (2)
is permanent and hence not easy to reconcile with the
fact that long-range correlations in the order flow are
observed empirically (Lillo and Farmer 2004, Bouchaud
et al. 2004).

In light of equations (1) and (2) there are three
possible causes for large price changes: (i) large order
flows Qti; (ii) large price impacts (small liquidities) "ti ;
and (iii) public information uti . We will present empirical
evidence that, in contrast to the theory (Gabaix et al.

yWe analysed the following companies (ticker symbols): AMAT, BRCD, BRCM, CSCO, INTC, KLAC, MSFT, ORCL,
QLGC, SEBL.
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2003), the order flow alone cannot explain extreme stock
price changes and that a low liquidity is a necessary con-
dition for the occurrence of such events. To this end, we
perform an event study of returns larger than five stan-
dard deviations. Specifically, we focus on the question of
whether the order flow is a good predictor for these
returns under the assumption of a time-independent
average price impact. We obtain a negative answer to
this question and argue instead that extreme returns are
observed only in times where the market liquidity is below
average. The magnitude of large returns can be explained
quantitatively when taking into account both order flow
and market liquidity.

The TAQ data base contains information about
transaction data such as the number of shares traded
and transaction price as well as information about quotes,
i.e. the lowest sell offer (ask price SaskðtÞ) and the highest
buy offer (bid price SbidðtÞ). The stock price change or
return in a time interval !t is defined as

G!tðtÞ ¼ lnSðtþ!tÞ " lnSðtÞ: ð3Þ

For the analysis of TAQ data, S(t) is the price at
which the last transaction before time t took place. For
the analysis of order book data, S(t) is chosen as the
midquote price SMðtÞ ¼ 1

2 ðSbidðtÞ þ SaskðtÞÞ as we want
to make comparisons with hypothetical price impacts
calculated from the order book. The market order flow
Q in a time interval is the sum of all signed market order
volumes executed between t and tþ!t. For the TAQ
data, the sign of a transaction is determined by the Lee
and Ready algorithm (Lee and Ready 1991), which
compares the transaction price with the midquote price.
The sign is positive for buy orders (transaction price
larger than the midquote price) and negative for sell
orders (transaction price smaller than the midquote
price). For the order book data, the data base contains
information about the direction of a trade. With this
data set we were able to test the Lee and Ready algorithm
by first computing the results using the algorithm and
then performing the same analysis with respect to the
buy and sell information contained in the order book
data base. On the level of single events, the transaction
directions from the Lee and Ready algorithm deviate
from the exact ones, but, upon averaging, both methods
yield a nearly identical price impact function.

Returns G are normalized by their standard deviation
#G, which is well defined because the cumulative
distribution function of returns follows a power law
with exponent around three (Lux 1996, Gopikrishnan
et al. 1998). Since trading volume is described by a
cumulative distribution with power law exponent
!V ¼ 1:5 (Gopikrishnan et al. 2000), its standard
deviation is not well defined. Hence, the order flow Q is
normalized by its first centred moment #Q ¼ hjQ" hQiji.

2. Average price impact and large events

The relation between price changes and market order flow
is described by the price impact function,

ImarketðQÞ ¼ hG!tðtÞiQ: ð4Þ

It describes the average price change G caused by an
order flow Qy in the same time interval. We ask whether
the average price impact function ImarketðQÞ is able to
describe extremely strong price changes G > 5#G. We
determined all time intervals with price changes larger
than five standard deviations and checked carefully that
these large price changes are not due to errors in the data
base but correspond to ‘real’ events. While the order book
data seem to be free of errors, some errors are contained
in the TAQ data. We filtered the raw TAQ data against
recording errors and apparent price changes due to the
combination of data from different ECNs (electronic
communications networks). We used the algorithm of
Chordia et al. (2001), which discards all trades for
which the difference between trade price and midquote
price is larger than four times the spread, which is defined
as Sask " Sbid. In addition, we checked visually the return
and trading volume time series surrounding the largest
price changes on a tick by tick basis and did not find
evidence for data errors after applying the filtering algo-
rithm. The data filtering removes about 1% of all transac-
tions and has a significant effect on the cumulative
distribution function PðG > xÞ. It is a common assump-
tion that returns follow asymptotically a power law with
PðG > xÞ ) x"$. The tail exponent $ was initially consid-
ered to be smaller than two. As a consequence, the stan-
dard deviation would not be well defined, and the time
aggregation of independent returns would be described by
a Levy stable distribution (Mandelbrot 1963). However,
subsequent works favour $ around three (Lux 1996,
Gopikrishnan et al. 1998). As there is still no final con-
sensus about whether a power law is the best description
for the return distribution function, the present paper
does not want to make a new contribution to this discus-
sion. From a methodological point of view, we use power
law fits as a simple descriptive method to discuss differ-
ences between data sets and to characterize nonlinearities.
For the raw data without any filtering, we find $ ¼ 2:1,
and after applying the filter we find $ ¼ 3:9 by fitting a
straight line in a double logarithmic diagram. We note
that the filtering algorithm (Chordia et al. 2001) is very
restrictive in the sense that it discards quite a few events
where the TAQ data set reports erratic and strong oscilla-
tions (of several #G) of the price which are probably due
to the combination of data from different ECNs. While
the price has already reached its new ‘true’ value in the
leading ECN, there may still be limit orders at the old
price in some smaller ECNs which are exploited by
arbitrage traders. While these oscillations are ‘true’ price

yWe do not include market orders executing ‘hidden’ limit orders in the definition of Q(t) as we want to make a comparison with the
order book containing ‘visible’ orders only.
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changes in the sense that they are not due to recording
errors, they are an artifact of the trading system and
were not included in our analysis.

Figure 1 shows both the price impact function and
those events with price changes larger than five standard
deviations #G. We find 1198 such events for the TAQ
data base and 210 for the Island ECN data. The large
events cluster at quite small values of Q where the
price impact function is significantly below G ¼ 5#G.
For some of these events the signs of Q and G do not
agree. We believe that this disagreement is (i) caused by
the inaccuracy of the Lee and Ready algorithm, as such
situations are less frequent for the order book data, and
(ii) due to the analysis of intervals with a fixed length
rather than the analysis of individual transactions.

We note that even for large order flows the average
price impact function is several standard deviations
(measured by the statistical error of the mean) below
the line G & 5#G for the TAQ data and at least one
standard deviation of the mean below the line G & 5#G
for the order book data. We conclude that order flow
alone cannot explain the occurrence of large returns
but must be accompanied by another effect. An obvious
explanation is that price impact is stronger than
average during the occurrence of large returns. In
the following, we will argue that this is indeed the
correct explanation.

3. Time varying price impact

As the average price impact function does not provide
for a satisfactory explanation of large returns, we study
the time dependence of price impact. In order to achieve
this goal, it is insufficient to calculate the price impact
function as a conditional average over many time
intervals. Instead, one needs to estimate the strength of
price impact within short time intervals. This goal can
only be achieved when using additional information
about limit orders. In an electronic market place, market
orders are matched with limit orders stored in the
order book. A buy limit order indicates that a trader is
willing to buy a specified number of shares at a given or
lower price, while a sell limit order signals that a trader
wants to sell a certain number of shares at a given or
higher price. The buy limit order with the highest price
determines the bid price, and the sell limit order with
the lowest price the ask price. The price change due to
a given market order is determined by the limit orders
stored in the order book. If a trader places a buy market
order with volume q, it executes as many limit orders
as necessary to fill that volume. In this way, the order
book determines the price change due to a single market
order. We describe limit orders by their density %bookð&i, tÞ
as a function of time t and the discrete coordinate

&i ¼
½ðlnðSlimitÞ " lnðSbidÞÞ=!&(!& limit buy order,

½ðlnðSlimitÞ " lnðSaskÞÞ=!&(!& limit sell order,

(

ð5Þ

which describes the position of orders in the order
book. Here, the function ½x( denotes the smallest integer
larger than x. The total volume of limit orders placed in
the interval ½ði" 1Þ!&, i!&( is given by %bookði!&, tÞ!&
with integer i. The use of a discrete grid improves
computational efficiency, reduces the amount of
computer memory needed for data analysis, and speeds
up calculations by more than one order of magnitude.
In our analysis, we chose !& ¼ 0:3#G as a compromise
between computational speed and accuracy.

A market buy order with volume q executes limit
sell orders stored in the order book beginning at the ask
price until the whole volume q is traded. The lowest
remaining sell limit order forms the new ask price.
Assuming a constant spread, the relation between return
G and order volume q is given by

qðGÞ ¼
X

&i*G
%bookð&i, tÞ!&, ð6Þ

which is just the market depth for a given return G. The
return G in equation (6) is denoted as the instantaneous
or virtual price impact of the order q. In the framework
of the model equation (1), the order book density is
approximated as constant and the depth would be just
qðGÞ ¼ G="t. From equation (6) one sees that the same
order volume q can be related to quite different returns G
depending on the function %bookð&i, tÞ. In the following,
we will argue that it is this time dependence of the order
book which is important for the occurrence of large price
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Figure 1. (a) Average price impact function for the 44
most frequently traded NASDAQ stocks in the year 1997 with
standard deviation of the mean. Price changes larger than five
standard deviations cluster in the region of small volume
imbalance, and all of them are clearly outside the error bars.
(b) Same as (a) but for 2002 data from the Island ECN order
book for the ten most frequently traded stocks.
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changes. We note that, from the order book, one obtains
only information about the price change as a function of
buy or sell volume. Order book information can be
related to time aggregated signed order volumes only
under the assumption (i) that the order book is symmetric
around the midquote price and that (ii) nonlinearities can
be neglected. Both assumptions are generally not satis-
fied. For this reason, we will consider either the buy or
the sell volume ~QQ in a given 5-min interval, depending on
the direction of the return in that interval. In this way, ~QQ
is equal to the volume of buy market orders if G!t > 0 in
the 5-min interval. For G!t < 0, on the other hand, ~QQ is
equal to the volume of sell market orders and has a
negative sign. We have recalculated Imarket as a function
of ~QQ by averaging with respect to either the sell or
the buy volume. This new ~IImarket is quite similar to the
original one.

We try to find a quantitative explanation of extreme
price changes by taking into account not only order
flow but also market liquidity as described by market
depth and market tightness in the beginning of a given
time interval. The depth D is the size of the market order
required to change the price by a given amount 5#G and is
obtained from equation (6). The tightness T is the cost
of a round trip (buying and selling a volume of 2#Q over
a short period of time). To determine the tightness for a
given time interval, we calculated the virtual price impact
Ibookð ~QQÞ by inverting the relation in equation (6), and
define the tightness as

T ¼ 1

jIbookð2#QÞj þ jIbookð"2#QÞj
: ð7Þ

In the framework of the model equation (1), the order
book density is approximated as constant and the
tightness would be just T ¼ 1=4#Q"t.

We compare the ratio of the actual price change G!tðtÞ
and the predicted price change,

GpredðtÞ ¼ ~IImarketð ~QQðtÞÞ, ð8Þ

with the inverse liquidity as described by the inverse
depth and the inverse tightness. We analyse 5-min returns
larger than five standard deviations for the ten most
liquid stocksy contained in the 2002 Island ECN data
set. The liquidity measures depth and tightness are nor-
malized by the average depth D and the average tightness
T calculated from the average order book. In order to
calculate Gpred, we computed ~IImarketð ~QQðtÞÞ up to
j ~QQj ¼ 18#Q as the statistics is insufficient for j ~QQj > 18#Q.
Therefore, we had to discard 11 events with j ~QQj > 18#Q
from this analysis. In addition, for eight events the order
book did not contain enough limit orders to trade a
volume of 2#Q, so we were not able to compute the tight-
ness T. In the analysis of the inverse tightness as liquidity
measure, these events are excluded. For reasons of con-
sistency, we also removed two events with D=D > 30 in

figure 2. A scatter plot for events with jG!tj > 5#G is
shown in figures 2 and 3. Contrary to the expectation
that the ratio of actual and predicted price change is
explained by a small liquidity, there is only a moderate
correlation between liquidity and returns for both depth
and tightness. This visual impression is confirmed by cor-
relation coefficients R2 ¼ 0:14 and R2 ¼ 0:11 for depth
and tightness, respectively.

When studying the price impact of the order flow in
a given time interval, it is not sufficient to invoke the
order book density %bookð&i, tÞ at one instant of time.
In addition, one has to consider changes in the
order book which occur within a given time interval.
Weber and Rosenow (2003) showed that the virtual
price impact of a given order volume is roughly four
times stronger than the actual one. This difference is
due to additional limit orders placed in reaction to a
price change. Hence, the inclusion of dynamical effects
is crucial for calculating the correct price impact.
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Figure 2. Ratio of actual price change to predicted price change
plotted against the inverse market depth for large 5-min returns
contained in the 2002 Island data. A linear regression (full line)
has a correlation coefficient R2 ¼ 0:14.
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Figure 3. Ratio of actual price change to predicted price change
plotted against the inverse market tightness for large 5-min
returns contained in the 2002 Island data. A linear regression
(full line) has a correlation coefficient R2 ¼ 0:11.

yWe analysed the following companies (ticker symbols): AMAT, BRCD, BRCM, CSCO, INTC, KLAC, MSFT, ORCL,
QLGC, SEBL.
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In order to calculate the density of limit orders arriving
in a given time interval, we fix a reference frame by the
bid and ask price in the beginning of the interval. Sell limit
orders arriving at a price lower than this ask price are
counted as if they were arriving at the ask price, and
vice versa for buy limit orders. While %bookð&i, tÞ describes
the density of limit order volume at a depth & i in the
beginning of the time interval ½t, tþ!t(, we define
another density function %flowð&i, t,!tÞ describing the
density of limit order volume placed at a depth &i
minus the limit order volume removed during this time
interval with

%flowð&iÞ ¼ hQadd
!t ð&iÞ "Qcanc

!t ð&iÞi, ð9Þ

where Qadd
!t ð&iÞ is the volume of limit orders added to

the book at a depth &i, and Qcanc
!t ð&iÞ is the volume of

orders canceled from the book. Thus, %flowð&i, tÞ!& is
the net limit order volume arriving in the time interval
½t, tþ!t( and in the price interval ½ði" 1Þ!&, i!&(. The
total limit order density available for transactions is then
given by

%ð&i, tÞ ¼ %bookð&i, tÞ þ %flowð&i, t,!tÞ: ð10Þ

The relation between %ð&i, tÞ and the order flow ~QQ is

~QQðGÞ ¼
X

&i*G

%ð&i, tÞ!&: ð11Þ

By inverting this relation we calculate a price impact
function Iactualð ~QQÞ. The sell order side of this function
for ten events with price changes larger than 5#G is
shown in figure 4. In figure 5, the average over all such
events is compared with the average price impact function
~IImarketð ~QQÞ. One sees that the slope of Iactualð ~QQÞ is much
larger than the slope of ~IImarketð ~QQÞ. As a consequence, in
time intervals with large price changes there are less limit
orders available than on average. Hence, we suggest the
use of the slope of the actual price impact function as a
measure of market liquidity.

The curves displayed in figure 4 look quite linear, and
also the average of the Iactual for all large events (see
figure 5) is approximately lineary. Accordingly, we expect
a linear fit to the actual price impact functions to be a
good description for the strength of price impact. For
each time interval with jG!tj > 5#G, we define a suscept-
ibility '(t) by a linear fit through the origin to the actual
price impact function Iactualð ~QQÞ up to a return G ¼ 5#G or
G ¼ "5#G, depending on the sign of G!t. Although in the
simple model equation (1) the order book density is
approximated as constant and dynamical effects are not
included, one can formally identify 'ðtÞ ¼ "t.

Liquidity is measured by the inverse 1='ðtÞ. In this way
a large slope of the price impact function corresponds to a
low liquidity.

In figure 6 the ratio of Gpred and G!t is plotted against
the susceptibility '=' for all events with jG!tj > 5#G. We
have normalized ' by ', the slope of a linear fit to the
average price impact function ~IImarket up to jG!tj ¼ 5#G.
To make this analysis consistent with the analysis of
tightness and depth we removed one event with extremely
small liquidity ('=' > 60). The data points in figure 6
cluster in the vicinity of a linear fit with R2 ¼ 0:79.
In comparison with the two liquidity measures used
above, this result is a considerable improvement. We
believe that the improved description of large returns
with the help of ' is due to the fact that the susceptibility
' takes into account the dynamics of the order book,
which is important for describing liquidity. From this
analysis, we conclude that the time-dependent slope of
the price impact function has a large explanatory power
for the occurrence of extreme price changes.

As additional evidence for the idea that the return in a
given time interval is caused by a combination of the
order flow and the time varying liquidity, we discuss

yWe tested Iactualð ~QQÞ for each time interval with price change larger than 5#G for nonlinearities. As a simple descriptive method
we fitted these curves with power laws. The exponents we found vary between 0.15 and 2.35 with a mean of 1.32 and they scatter
with a standard deviation of 0.41. On the other hand, a power law fit to the average of Iactual for all such events yields an exponent
of 1.03, which is approximately linear.
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Figure 4. Price change as a function of buy or sell volume for
ten of the largest price changes in the Island ECN data.
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Figure 5. Price change as a function of buy or sell volume
averaged over all time intervals with returns larger than 5#G
(connected black circles). The price change averaged over all
transactions (connected grey circles) is much smaller than that
for the extreme events.
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returns as a function of both order flow ~QQ in the direction
of the price change and the susceptibility '='. For this
analysis, the susceptibility ' needs to be redefined
because the order book density at a depth &i > G!t does
not affect the price dynamics. As this effect would weaken
the explanatory power of ' for time intervals with small
returns G!t < 5#G, we define a new susceptibility 'G by
a linear fit through the origin to the actual price impact
function Iactualð ~QQÞ up to the actual return G!t. In time
intervals with jG!tj < 1#G, the linear fit extends up to
#GsgnðG!tÞ in order to include enough data points for a
reliable fit.

In figure 7, the average return is plotted as a function
of both market order flow and liquidity measured by
'='G. The magnitude of returns is coded in a grey scale
from bright grey for small returns to black for the largest
ones. One observes quite sharp borders between regimes
of different expected returns, again demonstrating that,
for a given order flow, the magnitude of the return
depends on liquidity. In addition, one sees that large
returns occur only for liquidities below average, while
small returns can be found even for very large volumes.

4. Discussion

In the last section, we argued that a lack of liquidity is
a necessary condition for the occurrence of large returns
and that a combination of low liquidity and order
flow allows for a quantitative explanation of returns. So
far, we have not yet discussed the possible influence of
public information on large stock price changes. In an
earlier empirical study using a structural model of
intraday price formation (Madhavan et al. 1997), public
information was found to account for 35 to 46% of
the volatility of transaction price movements. As public
information seems to influence price volatility, it is
conceivable that public information also influences
unusually large price changes. In the standard pricing
model equations (1) and (2), the white noise term ut
describes price changes due to the arrival of new public
information. In a limit order market, this type of price
change takes place via cancelation and placement
of limit orders. To be specific, if there is good news
about a given company in the beginning of a 5-min inter-
val, e.g. a positive earnings report, prices might go up due
to the cancelation of sell limit orders in the vicinity of the
current ask price and the placement of new sell limit
orders at a higher price, and vice versa for buy limit
orders. In such a situation, we would observe a negative
%flow in the vicinity of the ask price and a positive %flow
some distance away from it. Thus, the total density
of limit orders %book þ %flow is reduced in the vicinity of
the ask price and the slope ' of a linear fit to the order
book is reduced as well. In other words, our liquidity
measure 1='ðtÞ reflects price movements due to public
information. In this sense, our liquidity measure describes
the combined influence of order book depth, resiliency,
and public information.

In our analysis, we have explained large price
movements by a reduction in liquidity, i.e. we have
argued that there is a causal relation between low
liquidity and large price movements. In a recent study
of the turbulent October 1987 period (Goldstein and
Kavajecz 2004) the limit order book spread was shown
to have increased significantly on October 28, the day
after the market drop on October 27. Although the size
of the spread does not affect midquote price changes,
this result supports the possibility that causality may
go from large price movements to a reduced liquidity as
well. While we cannot make general statements about
the possibility that large price movements may lead to
a liquidity reduction, it is clear from our analysis that
during the 5-min interval with the large price drop a
reduced liquidity is causally responsible for the large
price movement in the sense that an average order volume
causes an above average price change. We did not
study the reason for the below average liquidity in
such a time interval, i.e. we do not address the possibility
that a price movement at an earlier time may have
caused the reduction of liquidity.

In summary, we have studied two alternative
approaches to explain large stock price changes: large
fluctuations in trading volume and time varying liquidity.
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Figure 7. Expected return hG!tðtÞi ~QQ,'=' as a function of order
flow ~QQ and liquidity '='. For every combination of ~QQ and '='
we plotted (i) the average return if there is more than one match-
ing time interval, (ii) the return if there is only one event or (iii)
nothing if the combination never occurred. The magnitude of
the return is coded from bright grey for small returns to black
for the largest ones.
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Figure 6. Ratio of actual price change to predicted price change
plotted against the slope of the actual price impact function
normalized by the slope of the average price impact function.
The data points cluster in the vicinity of a linear fit with
R2 ¼ 0:79.
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We find little evidence that extreme stock price changes
are caused exclusively by a large trading volume. Using
order book data, we have reconstructed the price impact
of trading volume for all time intervals with returns larger
than five standard deviations. We find that the price
impact in these time intervals is much stronger than the
average one and that such an anomalously large price
impact is a necessary prerequisite for the occurrence of
extreme price changes. The combined effect of trading
volume and time varying liquidity can account for
extreme price changes quantitatively.
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