Publications



Submitted

Bonazzola, , Chepfer, Ma, Quaas, Winkler, and Feofilov, Incorporation of aerosols into the COSPv2 satellite lidar simulator for climate model evaluation, EGUSphere Discussions, in discussion, doi:10.5194/egusphere-2022-438.

Doktorowski, , Quaas, Kretzschmar, Sourdeval, and Salzmann, Subgrid-scale variability of cloud ice in the ICON-GCM, Geosci. Model Devel. Discuss., submitted.

Schwarz, , Savre, Sudhakar, Quaas, and Ekman, The transition from aerosol- to updraft-limited susceptibility regime in large-eddy simulations with bulk microphysics, Tellus B, submitted.

Stier, , Van den Heever, Christensen, Gryspeerdt, Dagan, Bollasina, Donner, Emanuel, Ekman, Feingold, Field, Forster, Haywood, Kahn, Koren, Kummerow, L'Ecuyer, Lohmann, Ming, Myhre, Quaas, Rosenfeld, Samset, Seifert, and Tao, Multifaceted aerosol effects on precipitation, Nature Geosci., revised.

Stjern, , Myhre, Samset, Kasoar, Forster, Jia, Jouan, Olivié, Quaas, Sand, Takemura, Voulgarakis, and Wells, The timescales of climate responses to carbon dioxide and aerosols, J. Climate, in revision.

2022

141. Caldas-Alvarez, , Augenstein, Ayzel, Barfus, Cherian, Dillenardt, Fauer, Feldmann, Heistermann, Karwat, Kaspar, Kreibich, Lucio-Eceiza, Meredith, Mohr, Niermann, Pfahl, Ruff, Rust, Schoppa, Schwitalla, Steidl, Thieken, Tradowsky, Wulfmeyer, and Quaas, Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area, Nat. Hazards Earth Syst. Sci., 22, 3701-3724, doi:10.5194/nhess-22-3701-2022, 2022.

140. Christensen, , Gettelman, Cermak, Dagan, Diamond, Douglas, Feingold, Glassmeier, Goren, Grosvenor, Gryspeerdt, Kahn, Li, Ma, Malavelle, McCoy, McCoy, McFarquhar, Mülmenstädt, Pal, Possner, Povey, Quaas, Rosenfeld, Schmidt, Schrödner, Sorooshian, Stier, Toll, Watson-Parris, Wood, Yang, and Yuan, Opportunistic experiments to constrain aerosol effective radiative forcing, Atmos. Chem. Phys., 22, 641-674, doi:10.5194/acp-22-641-2022, 2022.

139. Dipu, , Schwarz, Ekman, Gryspeerdt, Goren, Sourdeval, Mülmenstädt, and Quaas, Exploring satellite-derived relationships between cloud droplet number concentration and liquid water path using large-domain large-eddy simulation, Tellus, 74, 176-188, doi:10.16993/tellusb.27, 2022.

138. Ganske, , Heil, Lammert, Kretzschmar, and Quaas, Publication of Atmospheric Model Data using the ATMODAT Standard, Meteorol. Z., doi:10.1127/metz/2022/1118, 2022.

137. Goren, , Feingold, Gryspeerdt, Kazil, Kretzschmar, Jia, and Quaas, Projecting stratocumulus transitions on the albedoâ??cloud fraction relationship reveals linearity of albedo to droplet concentrations, Geophys. Res. Lett., 49, e2022GL101169, doi:10.1029/2022GL101169, 2022.

136. Haghighatnasab, , Kretzschmar, Block, and Quaas, Impact of Holuhraun volcano aerosols on clouds in cloud-system resolving simulations, Atmos. Chem. Phys., 2, 8457-8472, doi:10.5194/acp-22-8457-2022, 2022.

135. Jia, , Quaas, Gryspeerdt, Böhm, and Sourdeval, Addressing the difficulties in quantifying droplet number response to aerosol from satellite observations, Atmos. Chem. Phys., 22, 7353-7372, doi:10.5194/acp-22-7353-2022, 2022.

134. Krueger, , Holanda, Chowdhury, Pozzer, Walter, Pöhlker, Hernández, Burrows, Voigt, Lelieveld, Quaas, Pöschl, and Pöhlker, Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe, Atmos. Chem. Phys., 22, 8683-8699, doi:10.5194/acp-22-8683-2022, 2022.

133. Linke, , and Quaas, The impact of increasing CO2 levels on the Arctic atmospheric energy budget in CMIP6 climate model simulations, Tellus, 74, 106-118, doi:10.16993/tellusa.29, 2022.

132. Ma, , Harrop, Larson, Neale, Gettelman, Morrison, Wang, Zhang, Klein, Zelinka, Zhang, Qian, Yoon, Jones, Huang, Tai, Singh, Bogenschutz, Zheng, Lin, Quaas, Chepfer, Brunke, Zeng, Mülmenstädt, Hagos, Zhang, Song, Liu, Wan, Wang, Tang, Caldwell, Fan, Berg, Fast, Taylor, Golaz, Xie, Rasch, and Leung, Better calibration of cloud parameterizations and subgrid effects increases the fidelity of E3SM Atmosphere Model version 1, Geosci. Model Devel., 15, 2881-2916, 2022.

131. Marjani, , Tesche, Bräuer, Sourdeval, and Quaas, Satellite observations of the impact of aviation on ice crystal number in cirrus clouds, Geophys. Res. Lett., 49, e2021GL096173, doi:10.1029/2021GL096173, 2022.

130. Myhre, , Samset, Forster, Hodnebrog, Sandstad, Mohr, Sillmann, Stjern, Andrews, Boucher, Faluvegi, Iversen, Lamarque, Kasoar, Kirkevåg, Liu, Mülmenstädt, Quaas, Richardson, Smith, Shawki, Voulgarakis, Shindell, Tang, Stier, Watson-Parris, Takemura, and Olivié, Scientific data from Precipitation Driver Response Model Intercomparison Project (PDRMIP), Scientific Data, 9, 123, doi:10.1038/s41597-022-01194-9, 2022.

129. Papakonstantinou-Presvelou, , Sourdeval, and Quaas, Strong ocean/sea-ice contrasts observed in satellite-derived ice crystal number concentrations in Arctic ice boundary-layer clouds, Geophys. Res. Lett., 49, e2022GL098207, doi:10.1029/2022GL098207, 2022.

128. Quaas, , Jia, Smith, Albright, Aas, Bellouin, Boucher, Doutriaux-Boucher, Forster, Grosvenor, Jenkins, Klimont, Loeb, Ma, Naik, Paulot, Stier, Wild, Myhre, and Schulz, Robust evidence for reversal in the aerosol effective climate forcing trend, Atmos. Chem. Phys., 22, 12221-12239, doi:10.5194/acp-22-12221-2022, 2022.

127. Quaas, , and Gryspeerdt, Aerosol-cloud interactions in liquid clouds, In: Aerosols and Climate, K. Carslaw (ed.), 489-544, doi:10.1016/C2019-0-00121-5, 2022.

126. Salzmann, , Ferrachat, Tully, Münch, Watson-Parris, Neubauer, Siegenthaler-Le Drian, Rast, Heinold, Crueger, Brokopf, Mülmenstädt, Quaas, Wan, Zhang, Lohmann, Stier, and Tegen, The global atmosphere-aerosol model ICON-A-HAM2.3 - Initial model evaluation and effects of radiation balance tuning on aerosol optical thickness, J. Adv. Model. Earth Syst., 14, e2021MS002699, doi:10.1029/2021MS002699, 2022.

125. Wendisch, , Brückner, Crewell, Ehrlich, Notholt, Lüpkes, Macke, Burrows, Rinke, Quaas, Maturilli, Schemann, Shupe, Barrientos-Velasco, Barfuss, Blechschmidt, Block, Bougoudis, Bozem, Böckmann, Bracher, Bresson, Bretschneider, Buschmann, Chechin, Chylik, Dahlke, Deneke, Dethloff, Donth, Dorn, Dupuy, Ebell, Egerer, Engelmann, Eppers, Gerdes, Gierens, Gorodetskaya, Gottschalk, Griesche, Gryanik, Handorf, Altstädter, Hartmann, Hartmann, Heinold, Herber, Herrmann, Heygster, Höschel, Hofmann, Hölemann, Hünerbein, Jafariserajehlou, Jäkel, Jacobi, Janout, Jansen, Jourdan, Juranyi, Kalesse-Los, Kanzow, Käthner, Kliesch, Klingebiel, Knudsen, Kovacs, Körtke, Krampe, Kretzschmar, Kreyling, Kulla, Kunkel, Lampert, Lauer, Lelli, Von Lerber, Linke, Loehnert, Lonardi, Losa, Losch, Maahn, Mech, Mei, Mertes, Metzner, Mewes, Michaelis, Mioche, Moser, Nakoudi, Neggers, Neuber, Nomokonova, Oelker, Papakonstantinou-Presvelou, Pätzold, Pefanis, Pohl, Van Pinxteren, Radovan, Rhein, Rex, Richter, Risse, Ritter, Rostosky, Rozanov, Ruiz-Donoso, Saavedra, Salzmann, Schacht, Schäfer, Schneider, Schnierstein, Seifert, Seo, Siebert, Soppa, Spreen, Stachlewska, Stapf, Stratmann, Tegen, Viceto, Voigt, Vountas, Walbroel, Walter, Wehner, Wex, Willmes, Zanatta, and Zeppenfeld, Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project, Bull. Amer. Meteorol. Soc., online early, doi:10.1175/BAMS-D-21-0218.1, 2022.

2021

124. Dipu S., , Quaas, Quaas, Rickels, Mülmenstädt, and Boucher, Substantial climate response outside the target area in an idealized experiment of regional radiation management, Climate, 4, 66, doi:10.3390/cli9040066, 2021.

123. Gulev, , Thorne, Ahn, Dentener, Domingues, Gerland, Gong, Kaufman, Nnamchi, Quaas, Rivera, Sathyendranath, Smith, Trewin, Von Schuckmann, and Vose, Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 287--422, doi:10.1017/9781009157896.004, 2021.

122. Jia, , Ma, Yu, and Quaas, Significant underestimation of radiative forcing by aerosol-cloud interactions derived from satellite-based methods, Nature Comm., 12, 3649, doi:10.1038/s41467-021-23888-1, 2021.

121. Mülmenstädt, , Salzmann, Kay, Zelinka, Ma, Nam, Kretzschmar, Hörnig, and Quaas, An underestimated negative cloud feedback from cloud lifetime changes, Nature Climate Change, 11, 508-513, doi:10.1038/s41558-021-01038-1, 2021.

120. Novitasari, , Quaas, and Rodrigues, Leveraging machine learning to predict the autoconversion rates from satellite data, NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning, 2021.

119. Quaas, , Gryspeerdt, Vautard, and Boucher, Climate impact of aircraft-induced cirrus assessed from satellite observations before and during COVID-19, Environ. Res. Lett., 16, 064051, doi:10.1088/1748-9326/abf686, 2021.

118. Seelig, , Deneke, Quaas, and Tesche, Life cycle of shallow marine cumulus clouds from geostationary satellite observations, J. Geophys. Res. Atmos., 126, e2021JD035577, doi:10.1029/2021JD035577, 2021.

117. Senf, , Quaas, and Tegen, Absorbing aerosol decreases cloud cover in cloud-resolving simulations over Germany, Quart. J. Roy. Meteorol. Soc., 1-18, doi:10.1002/qj.4169, 2021.

116. Trömel, , Simmer, Blahak, Blanke, Ewald, Frech, Gergely, Hagen, Hörnig, Janjic, Kalesse, Kneifel, Knote, Mendrok, Moser, Möller, Mühlbauer, Myagkov, Pejcic, Seifert, Shrestha, Teisseire, Terzi, Tetoni, Vogl, Voigt, Zeng, Zinner, and Quaas, Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes, Atmos. Chem. Phys., 21, 17291-17314, doi:10.5194/acp-21-17291-2021, 2021.

2020

115. Bellouin, , Davies, Shine, Quaas, Mülmenstädt, Forster, Smith, Lee, Regayre, Brasseur, Sudarchikova, Bouarar, Boucher, and Myhre, Radiative forcing of climate change from the Copernicus reanalysis of atmospheric composition, Earth Syst. Sci. Data, 12, 1649-1677, doi:10.5194/essd-12-1649-2020, 2020.

114. Bellouin, , Quaas, Gryspeerdt, Kinne, Stier, Watson-Parris, Boucher, Carslaw, Christensen, Daniau, Dufresne, Feingold, Fiedler, Forster, Gettelman, Haywood, Lohmann, Malavelle, Mauritsen, McCoy, Myhre, Mülmenstädt, Neubauer, Possner, Rugenstein, Sato, Schulz, Schwartz, Sourdeval, Storelvmo, Toll, Winker, and Stevens, Bounding global aerosol radiative forcing of climate change, Rev. Geophys., 58, e2019RG000660, doi:10.1029/2019RG000660, 2020.

113. Block, , Schneider, Mülmenstädt, Salzmann, and Quaas, Climate models disagree on the sign of total radiative feedback in the Arctic, Tellus A, 72, 1-14, doi:10.1080/16000870.2019.1696139, 2020.

112. Cherian, , and Quaas, Trends in AOD, clouds and cloud radiative effects in satellite data and CMIP5 and CMIP6 model simulations over aerosol source regions, Geophys. Res. Lett., 47, e2020GL087132, doi:10.1029/2020GL087132, 2020.

111. Costa-Surós, , Sourdeval, Acquistapace, Baars, Henken, Genz, Hesemann, Jimenez, König, Kretzschmar, Madenach, Meyer, Schrödner, Seifert, Senf, Brueck, Cioni, Engels, Fieg, Gorges, Heinze, Siligam, Burkhardt, Crewell, Hoose, Seifert, Tegen, and Quaas, Detection and attribution of aerosol-cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model, Atmos. Chem. Phys., 20, 5657-5678, doi:10.5194/acp-20-5657-2020, 2020.

110. Ganske, , Heydebreck, Höck, Kraft, and Quaas, A Short Guide to Increase FAIRness of Atmospheric Model Data, Meteorol. Z., 29, 483-491, doi:10.1127/metz/2020/1042, 2020.

109. Krämer, , Rolf, Spelten, Afchine, Fahey, Jensen, Khaykin, Kuhn, Lawson, Lykov, Pan, Riese, Rollins, Stroh, Thornberry, Wolf, Woods, Spichtinger, Quaas, and Sourdeval, A Microphysics Guide to Cirrus - Part II: Climatologies of Clouds and Humidity from Observations, Atmos. Chem. Phys., 20, 12569-12608, doi:10.5194/acp-20-12569-2020, 2020.

108. Kretzschmar, , Stapf, Klocke, Wendisch, and Quaas, Employing airborne radiation and cloud microphysics observations to improve cloud representation in ICON at kilometer-scale resolution in the Arctic, Atmos. Chem. Phys., 20, 13145-13165, doi:10.5194/acp-20-13145-2020, 2020.

107. Lauer, , Block, Salzmann, and Quaas, CO2-forced changes of Arctic temperature lapse-rates in CMIP5 models, Met. Z., 29, 79-93, doi:10.1127/metz/2020/0975, 2020.

106. Mülmenstädt, , Nam, Salzmann, Kretzschmar, L'Ecuyer, Lohmann, Ma, Myhre, Neubauer, Stier, Suzuki, Wang, and Quaas, Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes, Science Adv., 6, eaaz6433, doi:10.1126/sciadv.aaz6433, 2020.

105. Quaas, , Arola, Cairns, Christensen, Deneke, Ekman, Feingold, Fridlind, Gryspeerdt, Hasekamp, Li, Lipponen, Ma, Mülmenstädt, Nenes, Penner, Rosenfeld, Schrödner, Sinclair, Sourdeval, Stier, Tesche, Van Diedenhoven, and Wendisch, Constraining the Twomey effect from satellite observations: Issues and perspectives, Atmos. Chem. Phys., 20, 15079-15099, doi:10.5194/acp-20-15079-2020, 2020.

104. Quaas, , and Lohmann, Clouds and Aerosols, In: Clouds and Climate: Climate Science's Greatest Challenge, A. Siebesma, S. Bony, C. Jakob, and B. Stevens, Eds., Cambridge University Press, 313-328, doi:10.1017/9781107447738.012, 2020.

103. Rickels, , Quaas, Ricke, Quaas, Moreno-Cruz, and Smulders, Who turns the global thermostat and by how much?, Energy Economics, 91, 104852, doi:10.1016/j.eneco.2020.104852, 2020.

102. Stevens, , Acquistapace, Hansen, Heinze, Klinger, Klocke, Schubotz, Windmiller, Adamidis, Arka, Barlakas, Biercamp, Brueck, Brune, Buehler, Burkhardt, Cioni, Costa-Surós, Crewell, Crueger, Deneke, Friederichs, Carbajal Henken, Hohenegger, Jacob, Jakub, Kalthoff, Köhler, Van Laar, Li, Löhnert, Macke, Madenach, Mayer, Nam, Naumann, Peters, Poll, Quaas, Röber, Rochetin, Rybka, Scheck, Schemann, Schnitt, Seifert, Senf, Shapkalijevski, Simmer, Singh, Sourdeval, Spickermann, Strandgren, Tessiot, Vercauteren, Vial, Voigt, and Zängl, Large-eddy and storm resolving models for climate prediction - the added value for clouds and precipitation, J. Meteorol. Soc. Japan, 98, doi:10.2151/jmsj. 2020-021, 2020.

101. Unglaub, , Block, Mülmenstädt, Sourdeval, and Quaas, A new classification of satellite-derived liquid water cloud regimes at cloud scale, Atmos. Chem. Phys., 20, 2407-2418, doi:10.5194/acp-20-2407-2020, 2020.

100. Von Savigny, , Timmreck, Buehler, Burrows, Giorgetta, Hegerl, Horváth, Hoshyaripour, Hoose, Quaas, Malinina, Rozanov, Schmidt, Thomason, Toohey, and Vogel, The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate - preparations for the next big volcanic eruption, Meteorol. Z., 29, 3-18, doi:10.1127/metz/2019/0999, 2020.

2019

99. Aas, , Mortier, Bowersox, Cherian, Faluvegi, Fagerli, Hand, Klimont, Galy-Lacaux, Lehmann, Lund Myhre, Myhre, Olivié, Sato, Quaas, Rao, Schulz, Shindell, Skeie, Stein, Takemura, Tsyro, Vet, and Xu, Global and regional trends of atmospheric sulfur, Sci. Rep., 9, 953, doi:10.1038/s41598-018-37304-0, 2019.

98. Böhm, , Sourdeval, Mülmenstädt, Quaas, and Crewell, Cloud base height retrieval from multi-angle satellite data, Atmos. Meas. Tech., 12, 1841-1860, doi:10.5194/amt-12-1841-2019, 2019.

97. Gryspeerdt, , Goren, Sourdeval, Quaas, Mülmenstädt, Dipu S., Unglaub, Gettelman, and Christensen, Constraining the aerosol influence on cloud liquid water path, Atmos. Chem. Phys., 19, 5331-5347, doi:10.5194/acp-19-5331-2019, 2019.

96. Hasekamp, , Gryspeerdt, and Quaas, Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions, Nature Comm., 10, 5405, doi:10.1038/s41467-019-13372-2, 2019.

95. Hutchison, , Iisager, Dipu S., Jiang, Quaas, and Markwardt, Evaluating WRF Cloud Forecasts with VIIRS Imagery and Derived Cloud Products, Atmosphere, 10, 521, doi:10.3390/atmos10090521, 2019.

94. Jia, , Ma, Quaas, Yin, and Qiu, Is the positive correlation between cloud droplet effective radius and aerosol optical depth over land due to retrieval artifacts or real physical processes?, Atmos. Chem. Phys., 19, 8879-8896, doi:10.5194/acp-19-8879-2019, 2019.

93. Kretzschmar, , Salzmann, Mülmenstädt, and Quaas, Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes, Atmos. Chem. Phys., 19, 10571-10589, doi:10.5194/acp-19-10571-2019, 2019.

92. Mülmenstädt, , Gryspeerdt, Salzmann, Ma, Dipu, and Quaas, Separating radiative forcing by aerosol-cloud interactions and fast cloud adjustments in the ECHAM-HAMMOZ aerosol-climate model using the method of partial radiative perturbations, Atmos. Chem. Phys., 19, 15415-15429, doi:10.5194/acp-19-15415-2019, 2019.

91. Schacht, , Heinold, Quaas, Backman, Cherian, Ehrlich, Herber, Huang, Kondo, Massling, Sinha, Weinzierl, Zanatta, and Tegen, The importance of the representation of air pollution emissions for the modeled distribution and radiative effects of black carbon in the Arctic, Atmos. Chem. Phys., 19, 11159-11183, doi:10.5194/acp-19-11159-2019, 2019.

90. Toll, , Christensen, Quaas, and Bellouin, Weak average liquid-cloud-water response to anthropogenic aerosols, Nature, 572, 51-55, doi:10.1038/s41586-019-1423-9, 2019.

89. Wendisch, , Macke, Ehrlich, Lüpkes, Mech, Chechin, Barrientos, Bozem, Brückner, Clemen, Crewell, Donth, Dupuy, Ebell, Egerer, Engelmann, Engler, Eppers, Gehrmann, Gong, Gottschalk, Gourbeyre, Griesche, Hartmann, Hartmann, Herber, Herrmann, Heygster, Hoor, Jafariserajehlou, Jäkel, Järvinen, Jourdan, Kästner, Kecorius, Knudsen, Köllner, Kretzschmar, Lelli, Leroy, Maturilli, Mei, Mertes, Mioche, Neuber, Nicolaus, Nomokonova, Notholt, Palm, Pinxteren, Quaas, Richter, Ruiz-Donoso, Schäfer, Schmieder, Schnaiter, Schneider, Schwarzenböck, Seifert, Shupe, Siebert, Spreen, Stapf, Stratmann, Vogl, Welti, Wex, Wiedensohler, Zanatta, Zeppenfeld, Dethloff, and Heinold, The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multi-Platform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification, Bull. Amer. Meteorol. Soc, 100, 841-871, doi:10.1175/BAMS-D-18-0072.1, 2019.

2018

88. Goren, , Rosenfeld, Sourdeval, and Quaas, Satellite observations of precipitating marine stratocumulus show greater cloud fraction for decoupled clouds in comparison to coupled clouds, Geophys. Res. Lett., 45, 5126-5134, doi:10.1029/2018GL078122, 2018.

87. Grosvenor, , Sourdeval, Zuidema, Ackerman, Alexandrov, Bennartz, Boers, Cairns, Chiu, Christensen, Deneke, Diamond, Feingold, Fridlind, Hünerbein, Knist, Kollias, Marshak, McCoy, Merk, Painemal, Rausch, Rosenfeld, Russchenberg, Seifert, Sinclair, Stier, Van Diedenhoven, Wendisch, Werner, Wood, Zhang, and Quaas, Remote sensing of cloud droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives, Rev. Geophys., 56, 409-453, doi:10.1029/2017RG000593, 2018.

86. Gryspeerdt, , Quaas, Goren, Klocke, and Brueck, An automated cirrus classification, Atmos. Chem. Phys., 18, 6157-6169, doi:10.5194/acp-18-6157-2018, 2018.

85. Gryspeerdt, , Sourdeval, Quaas, Delanoë, and Kühne, Ice crystal number concentration estimates from lidar-radar satellite retrievals. Part 2: Controls on the ice crystal number concentration, Atmos. Chem. Phys., 18, 14351-14370, doi:10.5194/acp-18-14351-2018, 2018.

84. Ma, , Jia, Yu, and Quaas, Opposite aerosol index-cloud droplet effective radius correlations over major industrial regions and their adjacent oceans, Geophys. Res. Lett., 45, 5771-5778, doi:10.1029/2018GL077562, 2018.

83. Mülmenstädt, , Sourdeval, Henderson, L'Ecuyer, Unglaub, Jungandreas, Böhm, Russell, and Quaas, Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset, Earth Syst. Sci. Data, 10, 2279-2293, doi:10.5194/essd-10-2279-2018, 2018.

82. Nam, , Kühne, Salzmann, and Quaas, A prospectus for constraining rapid adjustments in general circulation models, J. Adv. Model. Earth Syst., 10, 2080-2094, doi:10.1029/2017MS001153, 2018.

81. Petersik, , Salzmann, Kretzschmar, Cherian, Mewes, and Quaas, Subgrid-scale variability of clear-sky relative humidity and forcing by aerosol-radiation interactions in an atmosphere model, Atmos. Chem. Phys., 18, 8589-8599, doi:10.5194/acp-18-8589-2018, 2018.

80. Sourdeval, , Gryspeerdt, Krämer, Goren, Delanoë, Afchine, Hemmer, and Quaas, Ice crystal number concentration estimates from lidar-radar satellite remote sensing. Part 1: Method and evaluation, Atmos. Chem. Phys., 18, 14327-14350, doi:10.5194/acp-18-14327-2018, 2018.

2017

79. Cherian, , Quaas, Salzmann, and Tomassini, Black carbon indirect radiative effects in a climate model, Tellus, 69, 1369342, doi:10.1080/16000889.2017.1369342, 2017.

78. Dipu S., , Quaas, Wolke, Stoll, Muhlbauer, Salzmann, Heinold, and Tegen, Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT and evaluation using satellite data, Geosci. Model Devel., 10, 2231-2246, doi:10.5194/gmd-10-2231-2017, 2017.

77. Gryspeerdt, , Quaas, Ferrachat, Gettelman, Ghan, Lohmann, Morrison, Neubauer, Partridge, Stier, Takemura, Wang, Wang, and Zhang, Constraining the instantaneous aerosol influence on cloud albedo, Proc. Nat. Acad. Sci. USA, 119, 4899-4904, doi:10.1073/pnas.1617765114, 2017.

76. Heinze, , Dipankar, Henken, Moseley, Sourdeval, Trömel, Xie, Adamidis, Ament, Baars, Barthlott, Behrendt, Blahak, Bley, Brdar, Brueck, Crewell, Deneke, Girolamo, Evaristo, Fischer, Frank, Friederichs, Göcke, Gorges, Hande, Hanke, Hansen, Hege, Hoose, Jahns, Kalthoff, Klocke, Kneifel, Knippertz, Kuhn, Laar, Macke, Maurer, Mayer, Meyer, Muppa, Neggers, Orlandi, Pantillon, Pospichal, Röber, Scheck, Seifert, Seifert, Senf, Siligam, Simmer, Steinke, Stevens, Wapler, Weniger, Wulfmeyer, Zängl, Zhang, and Quaas, Large-eddy simulations over Germany using ICON: A comprehensive evaluation, Quart. J. Roy. Meteorol. Soc., 143, 69-100, doi:10.1002/qj.2947, 2017.

75. Heyn, , Block, Mülmenstädt, Gryspeerdt, Kühne, Salzmann, and Quaas, Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum, Geophys. Res. Lett., 44, 1001-1007, doi:10.1002/2016GL071975, 2017.

74. Heyn, , Quaas, Salzmann, and Mülmenstädt, Effects of diabatic and adiabatic processes on relative humidity in a GCM, and relationship between mid-tropospheric vertical wind and cloud-forming and cloud-dissipating processes, Tellus A, 69, 1272753, doi:10.1080/16000870.2016.1272753, 2017.

73. Kretzschmar, , Salzmann, Mülmenstädt, Boucher, and Quaas, Comment on ``Rethinking the lower bound on aerosol radiative forcing'', J. Clim., 30, 6579-6584, doi:10.1175/JCLI-D-16-0668.1, 2017.

72. Myhre, , Aas, Cherian, Collins, Faluvegi, Flanner, Forster, Hodnebrog, Klimont, Lund, Mülmenstädt, Myhre, Olivié, Prather, Quaas, Samset, Schnell, Schulz, Shindell, Skeie, Takemura, and Tsyro, Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015, Atmos. Chem. Phys., 17, 2709-2720, doi:10.5194/acp-17-2709-2017, 2017.

71. Patel, , Quaas, and Kumar, A new statistical approach to improve the satellite based estimation of the radiative forcing by aerosol- cloud interactions, Atmos. Chem. Phys., 17, 3687-3698, doi:10.5194/acp-17-3687-2017, 2017.

70. Quaas, , Quaas, Rickels, and Boucher, Are there good reasons against research into solar radiation management? - A model of intergenerational decision-making under uncertainty, J. Environ. Econ. Manage., 84, 1-17, doi:10.1016/j.jeem.2017.02.002, 2017.

69. Wendisch, , Brückner, Burrows, Crewell, Dethloff, Ebell, Lüpkes, Macke, Notholt, Quaas, Rinke, and Tegen, The Arctic Amplifier - Novel Science Planned in a New German Research Initiative, EOS, 98, doi:10.1029/2017EO064803, 2017.

2016

68. Bellouin, , Baker, Hodnebrog, Olivié, Cherian, Macintosh, Samset, Esteve, Aamaas, Quaas, and Myhre, Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions, Atmos. Chem. Phys., 16, 13885-13910, doi:10.5194/acp-16-13885-2016, 2016.

67. Boucher, , Balkanski, Hodnebrog, Myhre, Myhre, Quaas, Samset, Schutgens, Stier, and Wang, The jury is still out on the radiative forcing by black carbon, Proc. Nat. Acad. Sci. USA, 113, E5092-E5093, doi:10.1073/pnas.1607005113, 2016.

66. Gryspeerdt, , Quaas, and Bellouin, Constraining the aerosol influence on cloud fraction, J. Geophys. Res., 121, 3566-3583, doi:10.1002/2015JD023744, 2016.

65. Quaas, , Quaas, Boucher, and Rickels, Regional climate engineering by radiation management: Prerequisites and prospects, Earth's Future, 4, 618-625, doi:10.1002/2016EF000440, 2016.

64. Quennehen, , Raut, Law, Daskalakis, Ancellet, Clerbaux, Kim, Lund, Myhre, Olivié, Safieddine, Skeie, Thomas, Tsyro, Bazureau, Bellouin, Hu, Kanakidou, Klimont, Kupiainen, Myriokefalitakis, Quaas, Rumbold, Schulz, Cherian, Shimizu, Wang, Yoon, and Zhu, Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008, Atmos. Chem. Phys. , 16, 10765-10792, doi:10.5194/acp-16-10765-2016, 2016.

2015

63. Aswathy, , Boucher, Quaas, Niemeier, Muri, Mülmenstädt, and Quaas, Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering, Atmos. Chem. Phys., 15, 9593-9610, doi:10.5194/acp-15-9593-2015, 2015.

62. Baker, , Collins, Olivié, Cherian, Hodnebrog, Myhre, and Quaas, Climate responses to anthropogenic emissions of short-lived climate pollutants, Atmos. Chem. Phys., 15, 8201-8216, doi:10.5194/acp-15-8201-2015, 2015.

61. Eckhardt, , Quennehen, Olivié, Berntsen, Cherian, Christensen, Collins, Crepinsek, Daskalakis, Flanner, Herber, Heyes, Hodnebrog, Huang, Kanakidou, Klimont, Langner, Law, Lund, Mahmood, Massling, Myriokefalitakis, Nielsen, Nøjgaard, Quaas, Quinn, Raut, Rumbold, Schulz, Sharma, Skeie, Skov, Uttal, Salzen, and Stohl, Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set, Atmos. Chem. Phys., 15, 9413-9433, doi:10.5194/acp-15-9413-2015, 2015.

60. Mülmenstädt, , Sourdeval, Delanoë, and Quaas, Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals, Geophys. Res. Lett., 42, 6502-6509, doi:10.1002/2015GL064604, 2015.

59. Quaas, , Approaches to observe effects of anthropogenic aerosols on clouds and radiation, Current Climate Change Reports, 1, 297-304, doi:10.1007/s40641-015-0028-0, 2015.

58. Quaas, , and Stier, Satellite observations of convection and their implications for parameterizations, Parameterization of Atmospheric Convection, Vol. 2: Current Issues and New Theories, World Scientific Publishing, ISBN 978-1-78326-690-6, 47-58, doi:10.1142/9781783266913_0019, 2015.

57. Rosch, , Heus, Brueck, Salzmann, Mülmenstädt, Schlemmer, and Quaas, Analysis of diagnostic climate model cloud parametrizations using large-eddy simulations, Q. J. R. Meteorol. Soc., 141, 2199-2205, doi:10.1002/qj.2515, 2015.

56. Stohl, , Aamaas, Amann, Baker, Bellouin, Berntsen, Boucher, Cherian, Collins, Daskalakis, Dusinska, Eckhardt, Fuglestvedt, Harju, Heyes, Hodnebrog, Hao, Im, Kanakidou, Klimont, Kupiainen, Law, Lund, Maas, MacIntosh, Myhre, Myriokefalitakis, Olivie, Quaas, Quennehen, Raut, Rumbold, Samset, Schulz, Seland, Shine, Skeie, Wang, Yttri, and Zhu, Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants, Atmos. Chem. Phys., 15, 10529-10566, doi:10.5194/acp-15-10529-2015, 2015.

2014

55. Cherian, , Quaas, Salzmann, and Wild, Pollution trends over Europe constrain global aerosol forcing as simulated by climate models, Geophys. Res. Lett., 41, 2176-2181, doi:10.1002/2013GL058715, 2014.

54. Ma, , Yu, and Quaas, Reassessment of satellite-based estimate of aerosol-climate forcing, J. Geophys. Res., 119, 10394-10409, doi:10.1002/2014JD021670, 2014.

53. Nam, , Quaas, Neggers, Siegenthaler-Le Drian, and Isotta, Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data, J. Adv. Model. Earth Syst., 6, 300-314, doi:10.1002/2013MS000277, 2014.

52. Peters, , Quaas, Stier, and Graßl, Processes limiting the emergence of detectable aerosol indirect effects on tropical warm clouds in global aerosol-climate model and satellite data, Tellus B, 66, 24054, doi:10.3402/tellusb.v66.24054, 2014.

51. Rosenfeld, , Andreae, Asmi, Chin, Leeuw, Donovan, Kahn, Kinne, Kivekäs, Kulmala, Lau, Schmidt, Suni, Wagner, Wild, and Quaas, Global observations of aerosol-cloud-precipitation-climate interactions, Reviews Geophys., 52, 750-808, doi:10.1002/2013RG000441, 2014.

50. Yano, , Geleyn, Köhler, Mironov, Quaas, Soares, Phillips, Plant, Deluca, Marquet, Stulic, and Fuchs, Basic concepts for convection parameterization in weather forecast and climate models: COST Action ES0905 final report, Atmosphere, 6, 88-147, doi:10.3390/atmos6010088, 2014.

2013

49. Bellouin, , Quaas, Morcrette, and Boucher, Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13, 2045-2062, doi:10.5194/acp-13-2045-2013, 2013.

48. Boucher, , and Quaas, Water vapour affects both rain and aerosol optical depth, Nature Geosci., 6, 4-5, doi:10.1038/ngeo1692, 2013.

47. Cherian, , Venkataraman, Quaas, and Ramachandran, GCM simulations of aerosol extinction, heating and effects on precipitation over India, J. Geophys. Res., 118, 2938-2955, doi:10.1002/jgrd.50298, 2013.

46. Grützun, , Quaas, Ament, and Morcrette, Evaluating statistical cloud schemes - what can we gain from ground based remote sensing?, J. Geophys. Res., 118, 10507-10517, doi:10.1002/jgrd.50813, 2013.

45. Klocke, , Quaas, and Stevens, Assessment of different metrics for physical climate feedbacks, Clim. Dyn., 41, 1173-1185, doi:10.1007/s00382-013-1757-1, 2013.

44. Nam, , and Quaas, Geographical versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterisations, Geophys. Res. Lett., 40, 4951-4956, doi:10.1002/grl.50945, 2013.

43. Randles, , Kinne, Myhre, Schulz, Stier, Fischer, Doppler, Highwood, Ryder, Harris, Huttunen, Ma, Pinker, Mayer, Neubauer, Hitzenberger, Oreopoulos, Lee, Pitari, Genova, Quaas, Rose, Kato, Rumbold, Vardavas, Hatzianastassiou, Matsoukas, Yu, Zhang, and Lu, Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment, Atmos. Chem. Phys., 13, 2347-2379, doi:10.5194/acp-13-2347-2013, 2013.

42. Rennó, , Williams, Rosenfeld, Fischer, Fischer, Kremic, Agrawal, Andreae, Bierbaum, Blakeslee, Boerner, Bowles, Christian, Cox, Dunion, Horváth, Huang, Khain, Kinne, Lemos, Penner, Pöschl, Quaas, Seran, Stevens, Walati, and Wagner, CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate, Bull. Amer. Meteor. Soc., 94, 685-694, doi:10.1175/BAMS-D-11-00239, 2013.

41. Schemann, , Stevens, Grützun, and Quaas, Scale dependency of total water variance, and its implication for cloud parameterizations, J. Atmos. Sci., 70, 3615-3630, doi:10.1175/JAS-D-13-09.1, 2013.

40. Schirber, , Klocke, Pincus, Quaas, and Anderson, Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect towards the real world, J. Adv. Model. Earth Syst., 5, 58-70, doi:10.1029/2012MS000167, 2013.

39. Schneider, , Quaas, Claussen, and Reick, Satellite-based analysis of clouds and radiation properties of different vegetation types in the Brazilian Amazon region, AIP Conf. Proc. 1531, 428, doi:10.1063/1.4804798, 2013.

38. Tomassini, , Geoffroy, Dufresne, Idelkadi, Cagnazzo, Block, Mauritsen, Giorgetta, and Quaas, The respective roles of surface temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 transient climate simulations, Clim. Dyn., 41, 3103-3126, doi:10.1007/s00382-013-1682-3, 2013.

2012

37. Cherian, , Venkataraman, Ramachandran, Quaas, and Kedia, Examination of aerosol distributions and radiative effects over the Bay of Bengal and the Arabian Sea region during ICARB using satellite data and a general circulation model, Atmos. Chem. Phys., 12, 1287-1305, doi:10.5194/acp-12-1287-2012, 2012.

36. Devasthale, , Karlsson, Quaas, and Graßl, Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function, Atmos. Meas. Tech., 5, 267-273, doi:10.5194/amt-5-267-2012, 2012.

35. Gehlot, , and Quaas, Convection-climate feedbacks in ECHAM5 general circulation model: A Lagrangian trajectory perspective of cirrus cloud life cycle, J. Clim., 25, 5241-5259, doi:10.1175/JCLI-D-11-00345.1, 2012.

34. Nam, , and Quaas, Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat , J. Clim., 25, 4975-4992, doi:10.1175/JCLI-D-11-00347.1, 2012.

33. Peters, , Stier, Quaas, and Graßl, Aerosol indirect effects from shipping emissions: Sensitivity studies with the global aerosol-climate model ECHAM-HAM, Atmos. Chem. Phys., 12, 5985-6007, doi:10.5194/acp-12-5985-2012, 2012.

32. Quaas, , Evaluating the "critical relative humidity" as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data, J. Geophys. Res., 117, D09208, doi:10.1029/2012JD017495, 2012.

31. Sanchez-Lorenzo, , Laux, Hendricks-Franssen, Georgoulias, Calbó, Vogl, and Quaas, Assessing large-scale weekly cycles in meteorological variables: a review, Atmos. Chem. Phys., 12, 5755-5771, doi:10.5194/acp-12-5755-2012, 2012.

30. Weber, , and Quaas, Incorporating the subgrid-scale variability of clouds in the autoconversion parameterization, J. Adv. Model. Earth Syst., 4, M11003, doi:10.1029/2012MS000156, 2012.

29. Zhang, , O'Donnell, Kazil, Stier, Kinne, Lohmann, Ferrachat, Croft, Quaas, Wan, Rast, and Feichter, The global aerosol-climate model ECHAM5-HAM, version 2: sensitivity to improvements in process representations, Atmos. Chem. Phys., 12, 8911-8949, doi:10.5194/acp-12-8911-2012, 2012.

28. Zygmuntowska, , Mauritsen, Quaas, and Kaleschke, Artcic clouds and surface radiation - a critical comparison of satellite retrievals and the ERA-INTERIM reanalysis, Atmos. Chem. Phys., 12, 6667-6677, doi:10.5194/acp-12-6667-2012, 2012.

2011

27. Klocke, , Pincus, and Quaas, On constraining estimates of climate sensitivity with present-day observations through model weighting, J. Clim., 24, 6092-6099, doi:10.1175/2011JCLI4193.1, 2011.

26. Koch, , Balkanski, Bauer, Easter, Ferrachat, Ghan, Hoose, Iversen, Kirkevåg, Kristjánsson, Liu, Lohmann, Menon, Quaas, Schulz, Seland, Takemura, and Yan, Soot microphysical effects on liquid clouds, a multi-model investigation, Atmos. Chem. Phys., 11, 1051-1064, doi:10.5194/acp-11-1051-2011, 2011.

25. Peters, , Quaas, and Bellouin, Effects of absorbing aerosols in cloudy skies: A satellite study over the Atlantic Ocean, Atmos. Chem. Phys., 11, 1393-1404, doi:10.5194/acp-11-1393-2011, 2011.

24. Peters, , Quaas, and Graßl, A search for large-scale effects of ship emissions on clouds and radiation in satellite data, J. Geophys. Res., 116, D24205, doi:10.1029/2011JD016531, 2011.

23. Quaas, , Boucher, Bellouin, and Kinne, Which of satellite- or model-based estimates is closer to reality for aerosol indirect forcing? - Reply to Penner et al., Proc. Nat. Acad. Sci. USA, 108, E1099, doi:10.1073/pnas.1114634108, 2011.

22. Weber, , Quaas, and Räisänen, Evaluation of the subgrid-scale variability scheme for water vapor and cloud condensate in the ECHAM5 model using satellite data, Q. J. R. Meteorol. Soc., 137, 2079-2091, doi:10.1002/qj.887, 2011.

2010

21. Kazil, , Stier, Zhang, Quaas, Kinne, O'Donnell, Rast, Esch, Ferrachat, Lohmann, and Feichter, Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 10, 10733-10752, doi:10.5194/acp-10-10733-2010, 2010.

20. Kuhlmann, , and Quaas, How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data, Atmos. Chem. Phys., 10, 4673-4688, doi:10.5194/acp-10-4673-2010, 2010.

19. Lohmann, , Rotstayn, Storelvmo, Jones, Menon, Quaas, Ekman, Koch, and Ruedy, Total aerosol effect: forcing or radiative flux perturbation, Atmos. Chem. Phys., 10, 3235-3246, doi:10.5194/acp-10-3235-2010, 2010.

18. Quaas, , Stevens, Lohmann, and Stier, Interpreting the cloud cover - aerosol optical depth relationship found in satellite data using a general circulation model, Atmos. Chem. Phys., 10, 6129-6135, doi:10.5194/acp-10-6129-2010, 2010.

2009

17. Jones, , Christopher, and Quaas, A six year satellite-based assessment of the regional variations in aerosol indirect effects, Atmos. Chem. Phys., 9, 4091-4114, doi:10.5194/acp-9-4091-2009, 2009.

16. Quaas, , Bony, Collins, Donner, Illingworth, Jones, Lohmann, Satoh, Schwartz, Tao, and Wood, Current understanding and quantification of clouds in the changing climate system and strategies for reducing critical uncertainties, Clouds in the Perturbed Climate System. Proceedings Ernst Strüngmann Forum, 556-573, doi:10.7551/mitpress/9780262012874.003.0024, 2009.

15. Quaas, , Aerosol direct and indirect climate forcings - Clues from satellite data and global modeling, Current problems in atmospheric radiation, 1100, 573-576, doi:10.1063/1.3117050, 2009.

14. Quaas, , Ming, Menon, Takemura, Wang, Penner, Gettelman, Lohmann, Bellouin, Boucher, Sayer, Thomas, McComiskey, Feingold, Hoose, Kristjánsson, Liu, Balkanski, Donner, Ginoux, Stier, Grandey, Feichter, Sednev, Bauer, Koch, Grainger, Kirkevåg, Iversen, Seland, Easter, Ghan, Rasch, Morrison, Lamarque, Iacono, Kinne, and Schulz, Aerosol indirect effects - general circulation model intercomparison and evaluation with satellite data, Atmos. Chem. Phys., 9, 8697-8717, doi:10.5194/acp-9-8697-2009, 2009.

13. Quaas, , Boucher, Jones, Weedon, Kieser, and Joos, Exploiting the weekly cycle as observed over Europe to analyse aerosol indirect effects in two climate models, Atmos. Chem. Phys., 9, 8493-8501, doi:10.5194/acp-9-8493-2009, 2009.

2008

12. Quaas, , Boucher, Bellouin, and Kinne, Satellite-based estimate of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962, 2008.

2007

11. Lohmann, , Quaas, Kinne, and Feichter, Different approaches for constraining global climate models of the anthropogenic indirect aerosol effect, Bull. Amer. Meteor. Soc., 88, 243-249, doi:10.1175/BAMS-88-2-243, 2007.

2006

10. Penner, , Quaas, Storelvmo, Takemura, Boucher, Guo, Kirkevåg, Kristjánsson, and Seland, Model intercomparison of indirect aerosol effects, Atmos. Chem. Phys., 6, 3391-3405, doi:10.5194/acp-6-3391-2006, 2006.

9. Quaas, , Boucher, and Lohmann, Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data, Atmos. Chem. Phys., 6, 947-955, doi:10.5194/acp-6-947-2006, 2006.

8. Ringer, , McAvaney, Andronova, Buja, Esch, Ingram, Li, Quaas, Roeckner, Senior, Soden, Volodin, Webb, and Williams, Global mean cloud feedbacks in idealized climate change experiments, Geophys. Res. Lett., 33, L07718, doi:10.1029/2005GL025370, 2006.

2005

7. Dufresne, , Quaas, Boucher, Denvil, and Fairhead, Constrast of the climate effects of anthropogenic sulfate aerosols between the 20th and 21st century, Geophys. Res. Lett., 32, L21703, doi:10.1029/2005GL023619, 2005.

6. Quaas, , and Boucher, Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data, Geophys. Res. Lett., 32, L17814, doi:10.1029/2005GL023850, 2005.

2004

5. Doutriaux-Boucher, , and Quaas, Evaluation of cloud thermodynamic phase parameterizations in the LMDZ GCM by using POLDER satellite data, Geophys. Res. Lett., 31, L06126, doi:10.1029/2003GL019095, 2004.

4. Quaas, , Boucher, and Bréon, Aerosol indirect effects in POLDER satellite data and in the Laboratoire de Météorologie Dynamique-Zoom (LMDZ) general circulation model, J. Geophys. Res., 109, D08205, doi:10.1029/2003JD004317, 2004.

3. Quaas, , Boucher, Dufresne, and Treut, Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation in atmospheric GCM simulations of the 1930 - 1989 period, Clim. Dyn., 23, 779-789, doi:10.1007/s00382-004-0475-0, 2004.

2003

2. Joppich, , and Quaas, Coupling General Circulation Models on a Meta-Computer, Lecture Notes in Computer Science, 2658, 161-170, doi:10.1007/3-540-44862-4_18, 2003.

1. Menon, , Brenguier, Boucher, Davison, Genio, Feichter, Ghan, Guibert, Liu, Lohmann, Pawlowska, Penner, Quaas, Roberts, Schüller, and Snider, Evaluating aerosol/cloud/radiation process parameterizations with single column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations, J. Geophys. Res., 108, 4762, doi:10.1029/2003JD003902, 2003.

Letzte Aktualisierung am 28. Juni 2022 von J. Quaas