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Abstract

Recent works have explored the use of counting queries cou-
pled with Description Logic ontologies. The answer to such
a query in a model of a knowledge base is either an integer or
∞, and its spectrum is the set of its answers over all models.
While it is unclear how to compute and manipulate such a
set in general, we identify a class of counting queries whose
spectra can be effectively represented. Focusing on atomic
counting queries, we pinpoint the possible shapes of a spec-
trum over ALCIF ontologies: they are essentially the sub-
sets of N∪{∞} closed under addition. For most sublogics of
ALCIF , we show that possible spectra enjoy simpler shapes,
being Jm,∞K or variations thereof. To obtain our results, we
refine constructions used for finite model reasoning and no-
tably rely on a cycle-reversion technique for the Horn frag-
ment of ALCIF . We also study the data complexity of com-
puting the proposed effective representation and establish the
FPNP[log]-completeness of this task under several settings.

1 Introduction
Ontology-mediated query answering (OMQA) uses ontolo-
gies to offer a user-friendly vocabulary for formulating
queries or to encapsulate domain knowledge that can be uti-
lized to retrieve more comprehensive answers (Poggi et al.
2008; Xiao et al. 2018). Ontologies expressed in Descrip-
tion Logics (DLs), a family of knowledge representation
languages underpinning the OWL Web Ontology Language,
have received special attention (Artale et al. 2009; Baader
et al. 2017), and the core reasoning task of OMQA, the query
answering task, has been extensively studied for conjunctive
queries (CQs) and unions thereof. Under the OMQA frame-
work, answering CQs is addressed by considering every pos-
sible model of the knowledge base (KB), that is every ex-
tension of the data that satisfies the ontology, and returning
so-called certain answers, i.e. answers true in every model.

A recent line of research has explored ways of leveraging
OMQA to support counting queries, a well-known class of
aggregate queries that allows to perform analytics on data.
Several semantics for such queries have been investigated,
differing on how the possibility of multiple models is taken
into account. In (Feier, Lutz, and Przybylko 2021), this has
been addressed by returning the number of certain answers

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to a query, while in (Calvanese et al. 2008) an epistemic se-
mantics was adopted – enforcing the counting operator to
only involve known data values and making it possible to
use the usual notion of certain answers.

In this paper we adopt the semantic of (Kostylev and
Reutter 2015; Bienvenu, Manière, and Thomazo 2020) that
defines a counting query as a CQ in which some variables
have been designated as counting variables. The answer to
a counting query in a model of the KB is then obtained as
the number of different assignments for the counting vari-
ables when considering every possible homomorphism of
the CQ into the model. Finding uniform bounds on those an-
swers, i.e. model-independent bounds, has been viewed as a
notion of certain answers and is now well-understood for a
variety of DLs (Calvanese et al. 2020; Bienvenu, Manière,
and Thomazo 2022; Manière 2022). The following exam-
ple highlights that even the tightest uniform bounds give, in
general, a poor over-approximation of the set of answers.
Example 1. Consider an empty KB K and a counting query
q asking for the number of pairs (z1, z2) such that z1 and z2
are friends of alice, that is q = ∃z1 ∃z2 friendOf(z1, alice)∧
friendOf(z2, alice). Clearly, the set of possible answers to q
across models of K is {n2 | n ∈ N} ∪ {∞}. The tightest
uniform bounds on this set are given by the interval J0,∞K.

Rather than aiming for an over-approximation of the set
of possible answers, we intent to give a comprehensive de-
scription of this subset of N∞ = {0, 1, 2, . . . ,∞} that we
call the spectrum of the counting query, inspired by the no-
tion of spectrum of a formula that refers to the possible
cardinalities of its models (Fagin 1974; Durand, Fagin, and
Loescher 1997). We investigate the possible shapes of these
spectra for counting conjunctive queries (CCQs) mentioned
above and for ontologies expressed in the ALCIF DL. This
expressive DL is contained in SHIQ, in which traditional
CQ answering is well-understood (Glimm et al. 2008; Lutz
2008), and supports functionality constraints whose interac-
tions with counting queries have never been studied to the
best of our knowledge (those proposed in (Calvanese et al.
2020) and denoted N− being much more restricted).

One of the challenges encountered in our work is to clar-
ify how to represent spectra. Indeed, the set of possible an-
swers of a CCQ across models of a KB might, a priori, be
an arbitrary set of natural numbers, and thus hard to describe
by means other than providing the CCQ-KB couple. We aim
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to identify classes of ontology-mediated queries (OMQs)
whose spectra admit an effective representation. By effec-
tive, we intend a representation that is (i) finite, ideally with
a size that can be bounded by the size of the OMQ, (ii) inde-
pendent from the specific ontology language and (iii) spec-
trum membership can be efficiently tested, i.e. in polynomial
time w.r.t. the size of the integer and of the representation.

Contributions. We introduce the notion of a spectrum for
a CCQ and show that connected and individual-free CCQs
evaluated on ALCIF KBs always admit well-behaved spec-
tra, as those are subsets of N∞ closed under addition. We
then propose an effective representation of such spectra.

This motivates a focus on cardinality queries, i.e. Boolean
atomic CCQs (Bienvenu, Manière, and Thomazo 2021), that
fall in the above class. First, we fully characterize possible
spectra shapes for concept cardinality queries on ALCIF
KBs, showing that every subset of N∞ closed under addition
is realizable. We also study several sublogics of ALCIF ,
extending EL and DL-Litecore, for most presenting full
characterizations. For some, only simpler shapes, such as
Jm,∞K, are possible. For ELIF⊥, the Horn fragment of
ALCIF , we notably use variations of the cycle-reversion
techniques introduced to tackle finite model reasoning in
such DLs (Cosmadakis, Kanellakis, and Vardi 1990; Rosati
2008; Ibáñez-Garcı́a, Lutz, and Schneider 2014).

We further study the data complexity of computing the
proposed effective representations of spectra. For many set-
tings, such as concept cardinality queries on ALC KBs, we
are able to establish FPNP[log]-completeness of this problem.
Several of our upper bounds notably rely on existing results
regarding DLs equipped with closed predicates.

Via connections with the concept cardinality case and re-
finements of the corresponding constructions, we also inves-
tigate the case of role cardinality queries. This latter class
of OMQs features challenging shapes of spectra already for
EL⊥ KBs, and we prove that computing effective represen-
tations of those is FPNP[log]-complete already for EL KBs.

An appendix with full proofs can be found in the long
version of this paper, see (Manière and Przybyłko 2024).

2 Preliminaries
With N we denote the set of natural numbers N = {0, 1, . . . }
and by (N∞,+) the semigroup of natural numbers with in-
finity ∞ and the usual definition of addition +. In particular,
a + ∞ = ∞ + a = ∞ for all elements a ∈ N∞. We re-
call that every subsemigroup of (N∞,+), i.e. every subset
closed under addition, is ultimately periodic (see e.g. (Gril-
let 2001), Chapter 2, Proposition 4.1), which ensures that
every subsemigroup of N∞ takes the following shape.
Lemma 1. Let V be a subsemigroup of (N∞,+). Then V =
S ∪ {M + α · n | n ∈ N} where S is a finite subset of N∞

and M,α ∈ N∞.
If α = 1, we write S ∪ JM,∞J for S ∪ {M + n | n ∈ N}.

2.1 ALCIF and Other Description Logics
Let NC, NR, and NI be countably infinite and mutually
disjoint sets of concept names, role names, and individual

names. An inverse role takes the form r− with r a role name,
and a role is a role name or an inverse role. We denote N±

R
the set of roles. If r = s− is an inverse role, then r− de-
notes s. An ALCI concept is built according to the rule
C,D ::= ⊤ | A | ¬C | C ⊓ D | ∃r.D where A ∈ NC

and r ∈ N±
R . We use ⊥ as an abbreviation for ¬⊤, C⊔D for

¬(¬C ⊓ ¬D), ∀r.C for ¬∃r.¬C and ∃r for ∃r.⊤.
An ALCIF TBox is a finite set of concept inclusions

(CIs) C ⊑ D and of functionality restrictions C ⊑ ≤ 1 r.D
where C,D are ALCI concepts and r is a role. An ABox is
a finite set of concept assertions A(a) and role assertions
r(a, b) where A ∈ NC, r ∈ NR and a, b ∈ NI. The set of in-
dividual names used in the ABox A is denoted Ind(A). An
ALCIF knowledge base (KB) takes the form K = (T ,A)
with T an ALCIF TBox and A an ABox.

We also investigate restrictions of ALCIF . Each frag-
ment is obtained by disallowing concepts, roles construc-
tors, or axiom shapes in the standard way. An EL concept
is an ALCI concept that uses neither negation nor inverse
roles and an EL TBox only supports CIs of EL concepts.
Allowing inverse roles is indicated by I; concept disjoint-
ness axioms of shape C ⊓ D ⊑ ⊥ by subscript ⊥; unre-
stricted use of negation by replacing EL with ALC; and
functionality restrictions by F . A DL-Lite concept has shape
A | ∃r for A ∈ NC and r ∈ N±

R . A DL-Litecore TBox only
supports CIs and CDs of DL-Lite concepts. DL-LiteF ex-
tends DL-Litecore with unqualified functionality restrictions
⊤ ⊑ ≤ 1 r.⊤ (Calvanese et al. 2006).

The semantics is defined in terms of interpretations I =
(∆I , ·I) in the standard way. ∆I is a non-empty domain
and ·I an interpretation function. We refer to (Baader et al.
2017) for details. An interpretation I satisfies a CI C ⊑ D if
CI ⊆ DI and a functionality restriction C ⊑ ≤ 1 r.D if for
each d ∈ CI , there is at most one e ∈ DI such that (d, e) ∈
rI . It satisfies an assertion A(a) if a ∈ AI and r(a, b) if
(a, b) ∈ rI . We make the standard names assumption: in
every interpretation I, we assume aI = a for every a ∈
Ind(A). An interpretation I is a model of a TBox T , denoted
I |= T , if it satisfies all its axioms. Models of ABoxes and
KBs are defined likewise. A TBox T (resp. a KB K) entails
an assertion, a CI or a functionality restriction α, denoted
T |= α (resp. K |= α) if all its models satisfy α.

2.2 Spectra of Counting Queries
We consider two countably infinite and mutually disjoint
sets: a set of variables and a set of counting variables. A
counting conjunctive query (CCQ) takes the form q(x̄) =
∃ȳ ∃z̄ ψ(x̄, ȳ, z̄), where x̄ and ȳ are tuples of distinct vari-
ables, z̄ is a tuple of distinct counting variables and ψ is
a conjunction of concept and role atoms whose terms are
drawn from NI ∪ x̄ ∪ ȳ ∪ z̄. We call x̄ (resp. ȳ, resp. z̄) the
answer (resp. existential, resp. counting) variables of q. A
CCQ is Boolean if x̄ = ∅.

For a tuple ā ∈ NI
|ā| of individuals and a model I of a

KB K, we define #q(ā)I the answer of q(ā) on I as:
#{π|z̄ | π : q → I homomorphism s.t. π(x̄) = ā}.

The spectrum of q(ā) on K is further defined as:
SpK(q(ā)) := {#q(ā)I | I |= K}.
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Note that SpK(q(ā)) = SpK(q[ā/x̄](ā∅)), where q[ā/x̄] de-
notes the Boolean CCQ obtained from q by substituting ev-
ery answer variable xi ∈ x̄ by the corresponding ai ∈ ā,
and ā∅ the empty tuple. We thus focus w.l.o.g. on Boolean
CCQs q(x̄∅), denoted simply q for readability.

The main interest of this paper is to compute representa-
tions of spectra that are effective in the sense of Points (i)–
(iii) in the introduction. While we do not know whether all
spectra can be effectively represented, we identify a class
of OMQs, namely connected and individual-free CCQs on
ALCIF KBs, whose spectra admit such a representation.
We recall that q is connected if its Gaifman graph is, and is
individual-free if none of its atom involves a term from NI.
Lemma 2. If K is an ALCIF KB and q a connected and
individual-free CCQ, then SpK(q) is closed under addition.
Furthermore, if q is satisfiable w.r.t. K, then ∞ ∈ SpK(q).

In other words, spectra of connected and individual-free
CCQs are subsemigroups of N∞ and, by Lemma 1, are of
form S∪{M+α·n | n ∈ N}. Thus, for this class, computing
representations of spectra can be defined as follows.
Problem 1. Given a KB K and a CCQ q, compute a special
value ∅ if SpK(q) = ∅, otherwise a finite set S ⊆ N∞ and
numbersM,α ∈ N∞ s.t. SpK(q) = S∪{M+α·n | n ∈ N}.

It can be verified that such representations as triples
(S,M,α) comply with Points (i)–(iii) from the introduction
and are, in this sense, effective.
Remark 1. Notice SpK(q) = ∅ iff K is unsatisfiable; and,
likewise, SpK(q) = {0} iff K is satisfiable but q is unsatisfi-
able w.r.t. K. In particular, if K is an ELI KB, then SpK(q)
cannot be ∅ nor {0}. Similarly, if K is an ELIF KB, then
SpK(q) cannot be {0}. An effective representation of {0} in
the sense of Problem 1 is (S,M,α) = (∅, 0, 0).

A subset of N∞ is trivial if it is either ∅ or {0}.
We highlight that Example 1 illustrates a situation in

which the individual-freeness condition is not met.

3 Spectrum of a Concept Cardinality Query
In this section, we focus on concept cardinality queries
qC := ∃z C(z), where C ∈ NC is a concept name and z a
counting variable. Computing the spectrum of qC over a KB
K thus corresponds to the natural task of deciding the possi-
ble values of

∣∣CI
∣∣ across the models I of K. Every concept

cardinality query satisfies preconditions of Lemma 2 and
thus its spectrum can be represented as in Problem 1. Con-
versely, one can ask which sets are spectra of such queries.
We say a set V is L-concept realizable if there is a concept
C and a L KB K s.t. SpK(qC) = V . We begin with ALCIF
KBs and prove they can realize all subsemigroups of N∞.
Theorem 1. A non-trivial subset of N∞ is ALCIF -concept
realizable iff it is a subsemigroup of N∞ containing ∞.

Notice Lemma 2 already ensures that being a subsemi-
group of N∞ containing ∞ is necessary. The other direction
is a generalization of the following example that illustrates
how to realize a shape of spectrum with α = 2.
Example 2. Consider the ALCIF TBox T = { ⊤ ⊑ C,
A ⊑ ∃r.¬A, ¬A ⊑ ∃r.A, ⊤ ⊑ ≤ 1 r.⊤, ⊤ ⊑ ≤ 1 r−.⊤ }.
Then, Sp(T ,∅)(qC) = 2N ∪ {∞}.

Notice that to achieve the non-trivial period of α = 2 in
the spectrum 2N ∪ {∞}, we rely on a role that is both func-
tional and inverse functional. In fact, limiting one of these
two features forces a trivial periodic behavior, i.e. α = 1,
and further allows for easier computation of the spectra.

3.1 Limiting Inverse Functional Roles
We now move towards ALCF and ALCI , in which the
functionality of an inverse role cannot be expressed. As a
consequence, spectra of a concept cardinality query over
such KBs enjoy the following well-behaved shapes.
Theorem 2. A non-trivial subset of N∞ is ALCI- (resp.
ALCF -) concept realizable iff it has shape {0} ∪ JM,∞K
or shape JM,∞K for some M ∈ N.

The main ingredient for the ‘only-if’ part of Theorem 2 is
a technique that extends any model I in which

∣∣CI
∣∣ > 0 into

a model J with
∣∣CJ

∣∣ = ∣∣CI
∣∣+ 1, as used in (Baader, Bed-

narczyk, and Rudolph 2020) for ALCF KBs. Conversely, it
is not difficult to find KBs, already in DL-Litecore or EL⊥,
that realize these shapes notably relying on CD axioms for
the shape {0} ∪ JM,∞K.

Moreover, if we focus on negation-free DLs, the situation
becomes even more favorable:
Theorem 3. A non-trivial subset of N∞ is ELI- (resp.
ELF -) concept realizable iff it has shape JM,∞K for some
M ∈ N. For ELIF , the shape {∞} is also permitted.

For the shape {∞}, we use the following well-known ex-
ample of an ELIF KB (notice it is also a DL-LiteF KB).
Example 3. Consider the ELIF KB K = (T ,A) with A =
{r(a, a), r(a, b)} and T = { C ⊑ ∃r.⊤, ∃r−.⊤ ⊑ C, ⊤ ⊑
≤ 1 r−.⊤ }. It can be verified that SpK(qC) = {∞}.

3.2 ELIF⊥ KBs and Cycles Reversion
We now turn to the two remaining DLs, namely ELIF⊥ and
DL-LiteF , in which inverse functional roles and negation are
supported. We begin with an example illustrating that, com-
pared to the previously investigated restrictions of ALCIF ,
new spectrum shapes can be realized.
Example 4. We construct an ELIF⊥ KB K = (T ,A) s.t.
SpK(qC) = {4}∪ J6,∞K. The TBox T contains the axioms:

⊤ ⊑ C ⊓ ∃r.A1 ⊓ ∃r.A2 ⊤ ⊑ ≤ 1 s−.⊤
∃r.X ⊑ Y ∃r.Y ⊑ X Y ⊑ ∃s.X X ⊑ ∃s.Y

A1 ⊓A2 ⊑ ⊥ X ⊓Y ⊑ ⊥
The ABox A contains the 8 concept assertions A1(x1),
A2(x2), A1(y1), A2(y2), X(x1), X(x2), Y(y1), Y(y2), and
the 12 role assertions s(u1, v1), s(u2, v2), r(ui, vj) for each
i, j ∈ {1, 2} and each u, v ∈ {x, y} with u ̸= v.

A representation of this spectrum according to Problem 1
is (S,M,α) := ({4}, 6, 1). Such possibly non-trivial part S
of the spectrum make a full characterization of realizable
sets hard to reach. Interestingly, however, every ELIF⊥-
concept realizable set can be represented with α = 1.
Theorem 4. If a non-trivial subset of N∞ is ELIF⊥-
concept realizable, then it has shape {∞}, {0,∞}, or S ∪
JM,∞K for some M ∈ N and S ⊆ J0,MK.
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The remainder of this section is devoted to the proof of
this theorem. Let us first eliminate the easy cases, proving
{∞} and {0,∞} are already DL-LiteF -concept realizable.
The {∞} shape has been obtained in Example 3. To realize
{0,∞}, we rely on concept disjointness as follows:
Example 5. Consider the DL-LiteF TBox T containing:
C ⊑ ∃r ∃r− ⊑ C ⊤ ⊑ ≤ 1 r−.⊤ ∃r− ⊓ ∃s− ⊑ ⊥
C ⊑ ∃s ∃s− ⊑ C ⊤ ⊑ ≤ 1 s−.⊤

It is immediate to verify that Sp(T ,∅)(qC) = {0,∞}.
It remains to verify that every other non-trivial subset V of

N∞ that is ELIF⊥-concept realizable has shape S∪JM,∞K
for some M ∈ N and S ⊆ J0,MK. Let V be such a set
and K an ELIF⊥ KB s.t. V = SpK(qC) for some concept
name C. We prove that SpK(qC) actually contains two con-
secutive non-zero integers n and n + 1, which guarantees,
from closure under addition, that every integer greater than
n(n + 1) is also in SpK(qC). Setting M = n(n + 1) and
S = SpK(qC) ∩ J0,MK will then conclude the proof.

Since V is non-trivial and neither {0,∞} nor {∞}, it
contains a non-zero integer. In other words, the concept C
admits a finite interpretation in some (potentially infinite)
model (⋆). To exploit this fact, we refine cycle-reversion
techniques which have been developed to study finite rea-
soning in similar logics (Cosmadakis, Kanellakis, and Vardi
1990; Rosati 2008; Ibáñez-Garcı́a, Lutz, and Schneider
2014). More precisely, we tailor the notion of cycles to char-
acterize under which conditions the interpretation of C may
be finite. By (⋆), those conditions are satisfied and we adapt
a construction from the latter reference to produce models I
and J of K s.t

∣∣CJ
∣∣ = ∣∣CI

∣∣ + 1 < ∞ as desired. Hence-
forth, we assume ELIF⊥ KBs to be in normal form, that is
every axiom in the TBox has one of the following shapes:

K ⊑ A K ⊑ ∃r.K ′ ∃r.K ⊑ K ′ K ⊑ ≤ 1 r.K ′

where A ∈ NC∪{⊥}, r ∈ N±
R andK,K ′ are conjunctions of

concepts names. This is a reformulation of the normal form
used in (Ibáñez-Garcı́a, Lutz, and Schneider 2014) and it can
be verified that putting a KB in such a normal form does not
affect spectra of queries on this KB.

We now present our refined notion of cycles which itself
relies on the following definition of inverse functional paths.
Definition 1. An inverse functional path (IFP) in T is a se-
quence K0, r1,K1, . . . , rn,Kn where n ≥ 1, K0, . . . ,Kn

are conjunctions of concept names and r1, . . . , rn are (po-
tentially inverse) roles s.t. for all 0 ≤ i < n:
T |= Ki ⊑ ∃ri+1.Ki+1 and T |= Ki+1 ⊑≤ 1 r−i+1.Ki.

The interesting cycles for a concept C are the IFPs loop-
ing on themselves and forcing the presence of (at least) one
instance of C “per instance of the cycle”. This latter property
can also be expressed in terms of IFPs.
Definition 2. An IFP K0, r1,K1, . . . , rn,Kn is a C-
generating cycle in T if T |= Kn ⊑ K0 and there exists
an IFP L0, s1, L1, . . . , sm, Lm such that T |= Ki ⊑ L0 for
some 0 ≤ i ≤ n and T |= Lm ⊑ C.

We now reconcile with existing cycle reversion tech-
niques by considering a completion of the original TBox
containing reversed versions of each C-generating cycle.

Definition 3. We denote TC the ELIF⊥ TBox obtained from
T by adding the following axioms, for each C-generating
cycle K0, r1,K1, . . . , rn,Kn in T and each 0 ≤ i < n:

Ki+1 ⊑ ∃r−i .Ki and Ki ⊑ ≤ 1 ri+1.Ki+1

The key result regarding this cycle reversion technique fo-
cused on a single concept is the following lemma:
Lemma 3. Let (T ,A) be an ELIF⊥ KB and C a concept
name. There exists a model I of K s.t.

∣∣CI
∣∣ < ∞ iff the KB

(TC,A) is satisfiable. Furthermore, every such model I is a
model of (TC,A).

The ‘only-if’ direction of the above is the easy one: the
IFPs in Definition 2 enforce that for every Ki on a C-
generating cycle, there is an injection from KI

i to CI . Since
CI is finite, so are all these KI

i . It follows that the injective
function from KI

i to KI
i+1 defined by rIi+1 is actually a bi-

jection. From there, it is readily checked that I is a model of
(TC,A) as claimed, and thus (TC,A) is satisfiable.

For the ‘if’ direction of Lemma 3, assume KC = (TC,A)
is satisfiable. We adapt a construction from (Ibáñez-Garcı́a,
Lutz, and Schneider 2014) to assemble a model I of KC

(thus, of K) in which CI is finite. Our construction actually
takes as input any ELIF⊥ KB K = (T ,A) and guarantees
the above finiteness condition for all “safe” concepts of T .
A concept C is a safe concept of T if every axiom from TC
is already entailed by T . In particular, C is safe in TC.

We introduce some relevant preliminaries. Let NC(T ) be
the set of concept names used in T . A type for T is a subset
t ⊆ NC(T ) s.t. there is a model I of T and a d ∈ ∆I s.t.
tpI(d) = t, where tpI(d) is the type realized at d in I, i.e.:

tpI(d) := {A ∈ NC(T ) | d ∈ AI}
We use TP(T ) to denote the set of all types of T . A type is
critical in T if it occurs on a C-generating cycle for some
safe concept C of T . Otherwise it is a free type in T . For
t, t′ ∈ TP(T ) and r a role, we write:
• t →r t

′ if T |= t ⊑ ∃r.t′ and t′ is maximal for this
property;

• t→1
r t

′ if t→r t
′ and T |= t′ ⊑ ≤ 1 r−.t;

• t 1↔1
r t

′ if t→1
r t

′ and t′ →1
r− t.

A type class is a non-empty set P ⊆ TP(T ) such that
t ∈ P and t 1 ↔1

r t′ implies t′ ∈ P , and P is minimal
with this condition. Note that the set of all type classes is a
partition of TP(T ). We set P ≺ P ′ if there are t ∈ P and
t′ ∈ P ′ with t′ ⊊ t. Let ≺+ be the transitive closure of ≺.
It is known from (Ibáñez-Garcı́a, Lutz, and Schneider 2014)
that ≺+ is a strict partial order.

The initial interpretation I0
K is defined by introducing an

element for every ABox individual and an element dt for
each t ∈ TP(Tf ). Formally, we define:

∆I0
K = Ind(A) ∪ {dt | t ∈ TP(Tf )}

AI0
K = {a ∈ Ind(A) | A ∈ tpK(a)} ∪ {dt | A ∈ dt}

rI
0
K = {(a, b) | r(a, b) ∈ A}

where tpK(a) := {A ∈ NC | K |= A(a)}.
We describe three completion rules C1, C2, C3 applicable

to an interpretation I. Informally, whenever an existing d
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with type t′ needs a r.t-successor for some t, then C3 con-
nects d to dt if the chosen witness may be used by several
such elements d (that is t′ ̸→1

r t). If, on the other hand, the
witness cannot be reused, then C1 simply introduces a ded-
icated fresh element e if t is either free or not in the type
class of t′. Otherwise t is critical and in the type class P
of t′. Then C2 introduces or reuses existing elements to in-
stantiate the whole type class P at once. This requires only
finitely many fresh instances of each type in P , in particular,
critical types in P are instantiated only finitely many times.

C1. For each d ∈ ∆I , each t ∈ TP(T ) and each r ∈ N±
R

such that tpI(d) →1
r t, d /∈ (∃r.t)I , and either t ̸→1

r−

tpI(d) or t is a free type in T , add a fresh domain ele-
ment e and modify the interpretation of concept names
such that tpI(e) = t and (d, e) ∈ rI .

C2. Choose a type class P that is minimal w.r.t. the order
≺+, a λ = s 1 ↔1

r s′ with s ∈ P , and an element
d ∈ sI \ (∃r.s′)I . If such a choice is not possible, then
the application of C2 just returns the original model I.
Otherwise, for each λ = s 1↔1

r s
′ with s ∈ P , set:

XI
λ,1 = sI \ (∃r.s′)I XI

λ,2 = s′I \ (∃r−.s)I .

Take (i) a fresh set ∆s for each s ∈ P such that
|∆s| ≤ max{

∣∣tI∣∣ | t ∈ P} and (ii) a bijection πλ
from XI

λ,1 ∪∆s to XI
λ,2 ∪∆s′ for each λ = s 1↔1

r s
′

with s, s′ ∈ P and r ∈ NR. A concrete construction
of such sets and bijections can follow the one detailed
in (Ibáñez-Garcı́a, Lutz, and Schneider 2014). We ad-
ditionally require the above to minimize

∣∣⊎
s∈P ∆s

∣∣.
Now extend I as follows:

– add all domain elements in
⊎

s∈P ∆s;

– extend rI with πλ, for each λ = s 1 ↔1
r s′ with

s, s′ ∈ P and r a role name;
– interpret concept names so that tpI(d) = s for all
d ∈ ∆s, s ∈ P .

C3. For each d ∈ ∆I , each t ∈ TP(T ) and each r ∈ N±
R

such that tpI(d) →r t, tpI(d) ̸→1
r t, and d /∈ (∃r.t)I ,

add the edge (d, dt) to rI .

We denote Ck(I) the application of Ck to interpretation I.
For C2, this is ambiguous since its application may depend
on several choices (a minimal type class, etc). This does not
matter for our construction and we simply assume a fixed
choice. While it is easily verified that C3 is idempotent, that
is C3(C3(I)) = C3(I), it is not the case for C1 in general.
However, since applying C1 on I does not alter the inter-
pretation of concept and roles names on the original domain
∆I , we can safely define C∞

1 (I) =
⋃∞

n=1 Cn
1 (I), where Cn

1
denotes n successive applications of C1. We now view C∞

1
as a completion rule, which is clearly idempotent.

Starting from the initial interpretation I0
K previously de-

fined, we complete it as follows:

In+1
K = C3(C2(C∞

1 (In
K))) and IK =

⋃∞
n=0 In

K.

Here again, notice that each rule application on I preserves
the interpretation of concept names on ∆I and can only ex-
tend those of role names, so IK is well-defined. In fact, we

prove that IK is obtained after finitely many steps: there ex-
ists N ∈ N such that IN+1

K = IN
K . Crucially, this guaran-

tees that only finitely many instances of every critical type
and safe concepts are introduced. This culminates in the fol-
lowing lemma, which also concludes the proof of Lemma 3.

Lemma 4. If K = (T ,A) is a satisfiable ELIF⊥ KB, then
IK is a model of K and CIK is finite for all safe C of T .

Now, to finish the proof of Theorem 4, we build a model
with exactly one more instance of C than in the model IKC

obtained by the above procedure on KC := (TC,A). To do
so, we essentially relaunch this procedure on a simpler KB
K′ = (TC, {C(a)}), where a is a fresh individual name, and
then form the disjoint union of IK′ with IKC

. However, this
approach is too naive as the model IK′ might contain several
instances of the concept C, due to the initial elements dt for
each type t ∈ TP(T ). This cannot easily be solved by iden-
tifying the respective dt elements from IK′ and IKC

, as such
an operation may violate some functionality constraints.

Instead, we produce an incomplete version JK′ of IK′ in
which elements dt are absent and applications of rule C3 are
ignored. Formally, for an ELIF⊥ KB K, the interpretation
J 0
K is defined as I0

K, but without the dt elements, and we
further define, for all n ≥ 0:

J n+1
K = C2(C∞

1 (J n
K )) and JK =

⋃∞
n=0 J n

K .

The resulting interpretation JK is in general not a model of
K due to the non-applied C3 rules. It is however possible to
reuse dt elements of another model, e.g. those from IK.

Lemma 5. If K = (T ,A) is a satisfiable ELIF⊥ KB and
C is safe in T , then J = C3(IK ∪ JK′) is a model of K,
where K′ = (T , {C(a)}) with a /∈ Ind(A). Furthermore,
CJ = CIK ∪ {a}.

This concludes the proof of Theorem 4 as we obtain two
models IKC

and C3(IKC
∪J(TC,{C(a)})) with respectively n

and n+ 1 instances of C, both n and n+ 1 being finite.

3.3 The Case of DL-LiteF
We now build upon the above technique to obtain the fol-
lowing complete characterization for DL-LiteF KBs.

Theorem 5. A non-trivial subset of N∞ is DL-LiteF -
concept realizable iff it has shape {∞}, {0,∞}, {0} ∪
JM,∞K or JM,∞K for some M ∈ N.

The ‘if’ direction follows notably from Examples 3 and 5.
The converse is a consequence of the following lemma.

Lemma 6. Let K be a DL-LiteF KB and C a concept name.
If there exists a model I of K with 1 ≤

∣∣CI
∣∣ < ∞, then

there exists a model J of K with
∣∣CJ

∣∣ = ∣∣CI
∣∣+ 1.

Proof sketch. As for ELIF⊥, we consider the interpretation
JK′ where K′ = (TC, {C(a)}). We can then connect JK′ to
any model I of K in which there is at least one instance of C
by finding appropriate witnesses for the pending roles. This
is possible as DL-LiteF does not support qualified existen-
tial restrictions, thus imposing very little constraints on the
types of the required witnesses.
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EL, ALC, ELIF ,
DL-Litecore DL-LiteF ELI⊥, ELF⊥ ELIF⊥, ALCI , ALCF∗ ALCF ALCIF

Concept in FP in FPNP[log] in FPNP[1] FPNP[log]-c FPNP[log]-c FPNP[log]-h

Role in FP in FPNP[log] FPNP[log]-c FPNP[log]-c FPNP[log]-h FPNP[log]-h

Table 1: Worst-case complexity of Spectrum(q, T ) if q is a concept (resp. role) cardinality query and T is expressed in one of
the DLs on the first row. -h stands for -hard and -c for -complete.

4 Complexity of Computing Spectra
We now tackle the problem of computing the proposed ef-
fective representation of spectra, helped by our knowledge
of their possible shapes. We focus on data complexity: for a
fixed cardinality query q and a fixed TBox T , we study the
complexity of the Spectrum(q, T ) problem, which, given an
ABox A as input, computes the output of Problem 1 from
Section 2.

We use functional complexity classes: FP is the class of
functions computable in polynomial time by a Turing ma-
chine; FPNP[1] is FP with O(1) many queries to an NP ora-
cle; and FPNP[log] is allowed O(log(n)) many queries to NP
where n is the size of the input and p a polynomial. We re-
fer to (Krentel 1988; Jenner and Torán 1995) for details and
recall the following inclusions: FP ⊆ FPNP[1] ⊆ FPNP[log].

Our complexity results are summarized in Table 1. We
start with upper bounds.
Theorem 6. Spectrum(qC, T ) is in:

• FPNP[log] if T is in ELIF⊥, ALCI or ALCF .
• FPNP[1] if T is in ELI⊥ or ELF⊥.
• FP if T is in DL-Litecore.

The backbone of the above complexity results relies on
the fact that, in all the concerned cases, the possible spectra
are of the form S ∪ JM,∞K where S ⊆ J0,MJ and M is
either ∞ or M is polynomial w.r.t. data complexity.
Lemma 7. Let T be an ELIF⊥-, ALCI-, or ALCF -TBox
and C a concept name. There exists a polynomial p(x), with
coefficients computable from T and C, such that p(x) ≥ 1
for every x ≥ 0 and, for every KB K = (T ,A), either
• p(|A|) /∈ SpK(qC) and SpK(qC) ⊆ {0,∞}; or
• p(|A|) ∈ SpK(qC) and SpK(qC) = S ∪ JM,∞K where
S ⊆ J0,MK and M < p(|A|).

Moreover, in the latter case, M≤min(SpK(qC)) + p(0).
This allows us to present a simple and uniform descrip-

tion of an algorithm computing spectra. Let K = (T ,A)
be the input KB, q the input cardinality query, and p(x) the
polynomial from Lemma 7.

First the algorithm tests whether p(|A|) ∈ SpK(qC). If not
then we are in the first case of Lemma 7, that is SpK(qC) ⊆
{0,∞}. The algorithm now tests whether K is satisfiable:
if not, it returns ∅. Then, it checks whether qC is satisfiable
with respect to K: if not, it returns {0} (represented in the
sense of Problem 1 by the triple (∅, 0, 0)). Finally, the algo-
rithm checks whether 0 ∈ SpK(qC). If yes, it returns {0,∞}
and {∞} otherwise (respectively represented in the sense of
Problem 1 by triples ({0},∞, 0) and (∅,∞, 0)).

If p(|A|) ∈ SpK(qC) then we are in the second case
of Lemma 7, that is M < p(|A|) and S ⊆ J0,MK.
The algorithm first performs a binary search on the inter-
val J0, p(|A|)K to find min(SpK(qC)). In each step of the
search, the algorithm is given a number n ∈ J0, p(|A|)K
and performs a minimality test that verifies whether n >
min(SpK(qC)). Note that once the value of min(SpK(qC))
is found, the additional remark in Lemma 7 guaran-
tees that M ≤ min(SpK(qC)) + p(0) and thus S ⊆
Jmin(SpK(qC)),min(SpK(qC))+p(0)K. The algorithm per-
forms membership tests on this latter interval to compute M
and S. Finally, the algorithm returns the set S∪JM,∞K (rep-
resented in the sense of Problem 1 by the triple (S,M, 1)).

The correctness of the algorithm follows directly from
Lemma 7. The exact computational complexity depends on
the number and cost of satisfiability checks, membership
tests, and minimality tests. For instance, for ELIF⊥ the two
initial satisfiability checks can by performed by NP oracles
(Glimm et al. 2008). Similarly, the membership tests can be
resolved by an NP oracle as they can be seen as instances of
closed predicates problem, see (Lukumbuzya and Šimkus
2021). The minimality tests can be performed by an NP
oracle that guesses n′<n and performs a membership test.
Since the algorithm uses logarithmically many minimality
tests to compute min(SpK(qC)) and no more than p(0)+1
membership tests to compute S, the desired upper bound
holds.

In DL-Litecore, we can perform the satisfiability checks,
the membership tests, and the minimality tests in polyno-
mial time, see (Calvanese et al. 2006) and (Manière 2022)
[Theorem 51] respectively, resulting in overall polynomial
running time.

The following theorem provides two lower bounds, no-
tably establishing FPNP[log]-completeness in several cases.

Theorem 7. There exists an ELIF (resp. ALC) TBox T
such that Spectrum(qC, T ) is FPNP[log]-hard.

We reduce from the problem of computing the maximal
size of an independent set in a graph, known to be FPNP[log]-
hard (Krentel 1988). We briefly sketch the proof for ALC:
consider the TBox T := {¬C ⊑ ∀r.C}. Given a graph G =
⟨V,E⟩, we construct an ABox A consisting in r(u, v) for
every {u, v} ∈ E. Intuitively, ¬C describes an independent
set and we prove that k is the maximal size of an independent
set in G iff Sp(T ,A)(qC) = J|V | − k,∞K, that is the triple
(∅, |V | − k, 1) is our representation of Sp(T ,A)(qC).
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5 The Case of Role Cardinality Queries
In this section, we briefly mention the similar results we ob-
tain regarding role cardinality queries, i.e. CCQs with form
qr := ∃z1∃z2 r(z1, z2), where r ∈ NR is a role name and
z1, z2 are counting variables. Computing the spectrum of qr
on a KB K thus corresponds to deciding the possible val-
ues of

∣∣rI∣∣ across models I of K. Every such query satisfies
preconditions of Lemma 2 and thus its spectrum can be rep-
resented as in Problem 1. We say a set V is L-role realizable
if there is a role r and a L KB K s.t. SpK(qr) = V .

We first highlight that, if a DL of interest can express that
a role is functional, then there is a strong connection between
role-realizable and concept-realizable sets. Indeed, if T |=
⊤ ⊑ ≤ 1 r.⊤, then in every model I of T , we have

∣∣rI∣∣ =∣∣(∃r)I∣∣. The following is an immediate consequence.

Lemma 8. Let L be a fragment of ALCIF and V ⊆ N∞. If
V is L-concept realizable and axioms ⊤ ⊑≤ 1 r.⊤, ∃r ⊑ C
and C ⊑ ∃r are permitted in L, then V is L-role realizable.

The above notably applies to DL-LiteF and ALCF KBs.
For ALCIF KBs and joint with Theorem 1, we obtain:

Corollary 1. A non-trivial subset of N∞ is ALCIF -role
realizable iff it is a subsemigroup of N∞ containing ∞.

In the case of concept names, we established identical re-
sults for ALCI and ALCF KBs (Theorem 2). This does not
hold with a role name. In fact, we prove that ALCF KBs re-
alize the same sets as ALCIF , except for {∞} and {0,∞}.

Theorem 8. A non-trivial subset of N∞ is ALCF -role re-
alizable iff it is a subsemigroup of N∞ containing ∞ and at
least a non-zero natural.

To establish the above, we strongly rely on qualified func-
tional dependencies, i.e. axioms B1 ⊑ ≤ 1 r.B2 where
B1,B2 are not just ⊤. As ALCIF is sometimes defined to
only support unqualified functionality, i.e. only B1 = B2 =
⊤, we also treat this fragment, here denoted ALCIF∗.

Theorem 9. If a non-trivial subset of N∞ is ALCI- (resp.
ALCF∗-) role realizable, then it has shape S ∪ JM,∞K for
some M ∈ N and S ⊆ J0,MK. In the case of ELIF⊥,
shapes {∞} and {0,∞} are also permitted.

A key ingredient is to reuse techniques from Section 3 on
concept cardinality queries, notably for ELIF⊥ KBs, is the
observation, simply following from the semantics of con-
cepts, that in every interpretation I, we have:

max
(∣∣(∃r)I∣∣, ∣∣(∃r−)I∣∣) ≤ ∣∣rI∣∣ ≤ ∣∣(∃r)I∣∣ · ∣∣(∃r−)I∣∣.

Moreover, note that Theorem 9 is not a complete characteri-
zation. Indeed, as for concept cardinality queries on ELIF⊥
KBs (see Example 4), we exhibit a simple setting in which
the spectrum contains a non-trivial part S, already for an
EL⊥ TBox and the empty ABox.

Example 6. T = {⊤ ⊑ ∃r.A1,⊤ ⊑ ∃r.A2,A1 ⊓A2 ⊑ ⊥}
is an EL⊥ TBox and we have Sp(T ,∅)(qr) = {4} ∪ J6,∞K.

In the remaining fragments of ALCIF , our results mirror
those of the concept cardinality case, as summarized by the
following two theorems echoing Theorems 3 and 5.

Theorem 10. A non-trivial subset of N∞ is ELI- (resp.
ELF -) role realizable iff it has shape JM,∞K for some
M ∈ N. For ELIF , the shape {∞} is also permitted.

Theorem 11. A non-trivial subset of N∞ is DL-LiteF -role
realizable iff it has shape {∞}, {0,∞}, {0} ∪ JM,∞K or
JM,∞K for some M ∈ N. The same holds for DL-Litecore
but without shapes {∞} and {0,∞}.

Based on these results, we classify the complexity of com-
puting the proposed representation. Our complexity results
also appear in Table 1. For the upper bounds, we follow the
same approach as presented in Section 4 for concept cardi-
nality queries, and obtain the following:
Theorem 12. Spectrum(qr, T ) is in:

• FPNP[log] if T is in ELIF⊥, ALCI or ALCF∗.
• FP if T is in DL-Litecore.

The following theorem provides a lower bound that ap-
plies already for EL KBs.
Theorem 13. There exists an EL TBox T such that
Spectrum(qr, T ) is FPNP[log]-hard.

6 Conclusion
We have characterized almost exhaustively the possible
shapes of spectra for cardinality queries and proved that, in
many settings, computing the proposed effective represen-
tation is FPNP[log]-complete w.r.t. data complexity. Whether
an effective representation for the spectrum of a cardinal-
ity query over an ALCIF KB can be computed remains an
open question, despite our work fully characterizing its pos-
sible shapes. For DL-LiteF KBs, we conjecture FP mem-
bership as the use of NP oracles may not be necessary and
might be replaced by direct checks in P as those employed
for DL-Litecore KBs, here used in a black-box manner.

Departing from data complexity, it is readily verified that
the algorithm proposed in Section 4 provides a uniform pro-
cedure to compute the representation of a spectrum from an
input KB and cardinality query, in all cases covered by The-
orem 6 (resp. by Theorem 12 for role cardinality queries).
This notably relies on the polynomial provided by Lemma 7
being computable given a TBox and a query. Hence, a care-
ful inspection of the proof of the correctness of the algorithm
could provide upper bounds for the combined complexity of
spectrum computation. On the other hand, we believe that
further obtaining meaningful lower bounds for such high-
complexity functional classes is challenging.

We also emphasize that our investigation covers the ‘stan-
dard’ meaning of the spectrum for a logical formula, being
the possible sizes of its models: it suffices to set C = ⊤ in
our results for concept cardinality queries.

We believe that it could be interesting to study the impact
of our results on the closely related problem of answering
(Boolean atomic) queries under the bag semantics. While
the semantics adopted in the present paper does not coincide
with bag semantics, as discussed for example in (Nikolaou
et al. 2019; Calvanese et al. 2020), considerations regarding
the spectra and some of the corresponding techniques might
be adapted to this setting.
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