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DECEMBER, 1933 JOURNAL OF CHEMICAL PHYSICS VOLUME 1 

The Ground State of the Hydrogen Moleculel 

HUBERT M. JAMES AND ALBERT SPRAGUE COOLIDGE, Harvard University 

(Received October 3, 1933) 

The method used by Hylleraas in treating the He atom 
has been extended to the H2 molecule. The method consists 
of setting up a wave function as a series in the five variables 
required, electronic separation being introduced explicitly 
as one of the variables. The coefficients are then deter­
mined so as to produce the lowest energy. The energy found 
is within 0.03 v.e. of the most probable experimental value, 
while the form and location of the potential energy curve 

INTRODUCTION 

I N constructing an approximate wave function 
for the hydrogen molecule in its normal state 

(regarding the nuclei as fixed), one may follow 
several lines of attack. Heitler and London make 
use of the unchanged functions of the individual 
atoms, regarding the interatomic forces as small 
perturbations. In a molecule as close-coupled as 
H2 this implied persistence of the identity of the 
individual atoms is quite unjustified, and the 
resulting wave function is a very poor approxi­
mation. In particular, it is inadequate in that it 
is a function of only four electronic coordinates, 
instead of the required five. Aside from con­
venience, the only advantage of the H-L scheme 
seems to be that it yields a result in which the 
energy of the molecule is represented as a sum 
of terms, some of which are just the energy of 
the separated normal atoms, so that these may 
be cancelled out and the remaining terms called 
"binding energy." 

Several attempts have been made to improve 
the H-L method by grafting upon it the variation 
principle; the original atomic wave functions are 
modified by the introduction of one or two 
arbitrary parameters, which are then determined 
so as to give the lowest energy. Such schemes do 
give somewhat better results, but do not escape 
the essential shortcomings of the original method 

1 A preliminary notice appeared in Phys. Rev. 43, 588 
(1933). Some minor numerical inaccuracies in that notice 
have been corrected in the present paper. 

for various internuclear distances agree with those deduced 
from spectra to within similar limits. The value of the func­
tion is computed for several configurations of the electrons, 
and compared with other approximations. Application of 
the method to other problems is discussed. A method is 
given for the numerical solution of secular equations of 
high degree. 

-the implication of atomic individuality, and 
the omission of an essential coordinate. Indeed, 
they actually sacrifice the peculiar advantage of 
the pure perturbation method, since the un­
changed atomic energy no longer appears in the 
result. 

In view of the theoretical weakness and 
practical inadequacy of these methods, it seemed 
to us worth while to explore rather carefully a 
third possibility. Abandoning all concern with 
individual atoms, we have tried to build up from 
the ground a suitable molecular wave function, 
containing the full number of required coordi­
nates. While guided by certain considerations of 
limiting forms of this function, we have placed 
our main reliance on the variation principle, 
introducing a large number of parameters to be 
determined by its use. 

DISCUSSION OF METHOD 

Concerning the true function, we know the 
following: The ground state being a ~ state, 
the function must have rotational symmetry 
about the nuclear axis; that is, it may contain 
only the difference between the azimuthal angles 
of the two electrons, and not either angle alone. 
I t must be symmetrical in the two electrons and 
also in the nuclei. In those parts of phase-space 
corresponding to one electron at a large di:5tance 
from the nuclei, the wave function should 
approximate the product of a H-like function for 
the distant electron and an H2+-like function for 
the close electron. The last two conditions 
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826 H. M. JAMES AND A. S. COOLIDGE 

suggest the use of elliptical coordinates and the 
insertion of an exponential factor reducing to e-r 

for either electron at large distances. The neces­
sary flexibility can best be secured by expressing 
the rest of the function as a power series in the 
five variables, with coefficients to be determined 
by variation to produce the minimum energy. 
Such coefficients can be handled much more 
satisfactorily than parameters appearing in other 
ways (for example, in exponents). Finally, 
Hylleraas,2 working on another two-electron 
problem, the helium atom, has shown the ad­
vantage of taking the interelectronic distance 
itself, rather than the difference in azimuthal 
angle, as one of the independent variables. 

Let the distances between the several particles 
involved, expressed in terms of the first Bohr 
radius, carry the usual symbols R, rIa, rIb, r2a, 

r2b, f12. Then our coordinates are 

f.Jl = (rIa - fIb) / R, jJ.2 

P= 2f12/R, 

and our trial function is 

where [mnjkpJ stands for 

The summation is to extend over positive or 
zero values of the indices, subject to the re­
striction required by nuclear symmetry that 
j+k must be even, and taking as many terms as 
shall prove necessary to give an acceptable ap­
proximation for the energy. This approximation 
will be found by computing the minimum value of 
f fl/;*Ii1j;dVldV2 which can be obtained by suit­
able choice of the coefficients C, subject always 
to the normalizing condition f fl/;*l/;dVldV2 = 1, 
and must always lie above the true energy.3 The 
same choice of C's will then ensure that the trial 
function is as nearly as possible a solution of the 
wave equation Hl/;=El/;. The errors in the func­
tion itself will greatly exceed that in the energy; 

2 E. A. Hylleraas, Zeits. f. Physik 54, 347 (1929). 
• See, for instance, J. K. L. MacDonald, Phys. Rev. 43, 

830 (1933). 

Eckart4 has shown that if the errors are small, 
the former will be of the order of the square root 
of the latter. 

In accordance with what has been said about 
the limiting iorm of the function, the exponent 
o should have the value R/2, but additional 
flexibility can be secured without much addi­
tional calculation by regarding it as another 
arbitrary parameter to be varied. It should be 
noted that the effect of such variation upon the 
wave function will be slight (at least in the 
region where the function is important), provided 
that the coefficients are allowed to re-adjust 
themselves. For a small change in 0 is equivalent 
to multiplication by a rapidly converging power­
series in }.l and }.2, the effect of which can be 
almost completely absorbed by appropriate 
changes in the coefficients of the smaller powers. 
Now, the whole computation must be done from 
the ground up for each new value of 0, while 
different values of R can be introduced with little 
trouble. Let us limit ourselves to a definite 
number, s, of terms in the series for l/;. Then 
for each value of 0 there will be one R for which 
the best energy will be lower than it would have 
been for the same R if we had used any other o. 
To find this, we must plot a series of curves 
(similar in appearance to Morse curves), each 
giving the energy computed with a given 0 for 
various R's. The envelope of this family of 
curves will then show the lowest energy ob­
tainable for any R with the corresponding most 
appropriate 0, and each 0 used in computing 
will be the best possible for that particular R at 
which its curve osculates the envelope. (It turns 
out that 0 should somewhat exceed R/2.) 

For a given 0 and R, it can be readily3 shown 
that the values of the C's which minimize the 
computed energy are those which satisfy the 
system of equations 

(Hn - XSn)CI + (H12 - }.S12)C2+, " 
+ (Hls - XSh) C8 = 0 

(HI2 - XSI2)CI+(H22- XS22)C2+, .. 

+ (H28 XS28) C. = 0 

(Hlo - }.Sls) C1 + (H28 - XS2s) C2+ ... 

+ (H8 • - XS.s) C. = O. 

4 C. Eckart, Phys. Rev. 36, 878 (1930). 
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GROUND STATE OF THE HYDROGEN MOLECULE 827 

Here A is a Lagrangian multiplier, and the 
condition of compatibility is the secular equation 

Hll - ASU H12 - AS12 

H12 - ASJ2 H22 - AS22 

H Js - AS!. 

H 2s - AS28 

FIss- AS •• 

o. 

The H fg and the Slu are the matrix components 
of the Hamiltonian energy operator and of unity, 
respectively, between the fth and gth terms in 
the series, considered as numbered consecutively 
from 1 to s. Details of their computation, of the 
solution of the secular equation, and of the 
determination of the C's will be reserved for 
the Appendix. As usual, the lowest of the s values 
of A turns out to be the required minimum 
energy, and can be found without determining 
the C's. 

By way of finding out how many and which 
terms in the series would have to be used in 
order to get a good approximation for the wave 
function, we confined ourselves in the beginning 
to the equilibrium distance, R = 1.4, and to 
15 = 0.75. It soon became apparent that the first 
few terms alone were capable of giving a far 
better energy value than any previously reported, 
and that incorporation of additional terms pro­
duced only rapidly diminishing improvements. 
In some cases, even terms involving low powers 
of the variables made such slight changes as to 
warrant leaving them out. Of course, the in­
corporation of each new term required the 
computation of its matrix elements with an the 
terms already in use and the solution of a new 
secular equation of higher degree. Strictly, a 
term should not be neglected until it had been 
tested in combination with all other terms. But 
it soon became clear that the improvement 
obtainable by any given term became progres­
sively less important as the number of other 
terms present increased, so that we were justified 
in rejecting any term which at any stage in the 
building up of our function was found to produce 
a negligible improvement in the energy. 

RESULTS 

An idea of the results obtained is given in 
Table I, in which the energy at several stages is 

TABLE I. 

Total Binding 
energy energy Internuclear 
atomic electron- distance, 

Function units volts Bohr radii 

One term -2.189 -2.56 1.40 
5 terms -2.33290 -4.507 1.40 
11 terms -2.34580 -4.682 1.40 
13 terms -2.34693 -4.697 1.40 
Without r12 -2.3154 -4.27 1.40 
Heider-London -2.21 -2.9 1.40 
Heitler-London -2.24 -3.2 1.51 
Wang -2.278 -3.76 1.42 
Rosen -2.297 -4.02 1.416 
Observed -4.73±0.04 1.40 

compared with that given by other methods, and 
with the observed value. The last is obtained by 
adding 0.27 v.e., the zero-point energy of the 
normal molecule, to the heat of dissociation, 
which is 4.46±0.04 according to Richardson and 
Davidson/' while Mulliken6 gives 4.44. Much of 
the table is copied from Rosen,7 who, however, 
seems to have neglected the zero-point energy 
in giving the observed value. The values in the 
last column are those for which the various 
functions (other than the series functions here 
presented) give their best results. They are 
sufficiently near R = 1.4 for purposes of com­
parison, except the Heitler-London function, 
whose minimum energy lies at considerably 
greater R, so that it seems worth while to 
include also the energy given by this function at 
the true distance. 

TABLE II. 

Terms Coefficients in normalized functions 

[OOOOOJ 1.69609 2.23779 2.29326 2.22350 
[00020J 0.80483 1.19526 1.19279 
[00110J -0.27997 -0.49921 -0.45805 
[10000J -0.60985 -0.86693 -0.82767 
[10200J -0.13656 -0.17134 
[10020J -0.07214 -0.12101 
[1011 OJ 0.14330 0.12394 
[20000J 0.06621 0.08323 
[OOOOlJ 0.19917 0.33977 0.35076 
[00021J 0.0709Q 
[00111J -0.03143 -0.01143 
pOOOlJ -0.03987 
00002J -0.02456 -0.01197 

5 O. W. Richardson and P. M. Davidson, Proc. Roy. Soc. 
A123, 466 (1929). 

6 R. S. Mulliken, Rev. Mod. Phys. 4, 78 (1932). 
7 N. Rosen, Phys. Rev. 38, 2099 (1931). 
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828 H. M. JAMES AND A. S. COOLIDGE 

The terms used ill the first four functions of 
Table I, together with their normalized coeffi­
cients, are given in Table II. It is interesting to 
note that the simple exponential wave function, 

already gives a binding energy comparable to 
that of the H-L function; indeed, by a suitable 
choice of 0 the result can be made better, when 
for both functions R = 1.4. In the energy thus 
calculated, there is nothing resembling the "ex­
change integrals" of the H-L treatment; this 
raises the question whether the importance of 
the "exchange terms," frequently assumed to 
represent the essential nature and magnitude of 
chemical binding, may not have been over­
emphasized. The five-term function is offered as 
a practical compromise between simplicity and 
accuracy. The reason for including both 11- and 
13-term functions is really accidental. Due to a 
mistake, we at first believed that the contribu­
tions from the terms [00021J and [10001J could 
be neglected, and we therefore took the 11 terms 
as a basis for investigating the effects of varying 
o and R (discussed later). The results showed 
that in fact we had hit upon the best possible 
v~lues of both. Ir;" going over the work, we 
discovered the mistake, and found that a slight 
improvement could be obtained by including the 
two given terms, and we therefore offer the 13-
terms function as the best known approximation 
to the true wave function of H 2• It did not seem 
worth while to repeat the variations of 0 and R 
with this slightly different form of the function. 

The energy given by the 13-term function is 
within the range fixed by experiment, but higher 
than the most probable value. It is beyond 
doubt that if still more terms were included, the 
result could be still further depressed. We have 
made a rather careful estimate of what could be 
gained in this way, reasoning by analogy from 
the contributions actually found from series of 
related terms; it seems safe to say that we have 
reached the limit of convergence within from 
0.01 to 0.05 volt. The theoretical energy of the 
hydrogen bond is, then, 4.73±0.02 volt, as 
compared with the experimentaI4.73±0.04 volt. 

We found it possible to reach the value -4.27 
with a combination of terms with p = 0, and 
therefore not including r12 in the wave function. 

(The coefficients were not determined in this 
case.) This is substantially the same as the value 
reported by Hylleraas8 as the best which he 
could obtain by an involved computation which 
he does not reproduce, and is probably close to 
the limit obtainable with wave functions in four 
coordinates. 

It may be of interest to compare the magni­
tudes of some of the functions themselves, 
computed for various positions of the electrons, 
and to see how nearly they satisfy Schrodinger's 
equation. Table III shows values of 1{; and of 

rIa 
rIb 
ro. 
r'b 
71' 
rpl-rp2 

H-L 
Rosen 
5-term 

II-term 
13-term 

H-L 
Rosen 
5-term 

II-term 
13-term 

TABLE III. 

Coordinates 

0.35 0.35 0.35 0.35 1.4 1.4 
1.4 1.4 1.4 1.4 1.4 1.4 
0.35 0.7 0.7 0.7 1.4 1.4 
1.75 0.7 1.4 1.4 1.4 1.4 
0.525 0.7425 0.3556 1.0334 0 2.4249 

00 1800 00 1800 

Values of >/- (normalized) 
0.0532 0.0849 0.0533 0.0533 0.0219 0.0219 
0.0702 0.1215 0.0710 0.0710 0.0249 0.0249 
0.0798 0.1172 0.0698 0.0777 0.0162 0.0271 
0.0783 0.1180 0.0667 0.0777 0.0130 0.0271 
0.0769 0.1162 0.0656 0.0772 0.0142 0.0269 

Values of (H-E)>/-, in 27.08 volts 
-0.0425 -0.0481 0.0460 -0.0522 0.0313!p -0.0052 
-0.0310 -0.0015 0.0879 -0.0429 0.0356jp -0.0038 

0.0148 0.0093 0.0653 -0.0097 0.0102/p -0.0002 
0.0117 0.0109 0.0356 -0.0060 -0.0034/ p -0.0005 
0.0055 0.0060 0.0269 -0.0021 0.0028/ p -0.0009 

(ll -E)1{;, calculated in each case for R= 1.4; 
the unit of energy is here (as in all our compu­
tations) 27.08 v.e., twice that adopted for 
purposes of comparison in Table I. 

It is natural to regard the discrepancies 
between the various functions as a rough indica­
tion of their probable errors. The differences 
shown in Table III are representative of a large 
number of points which have been calculated. 
Evidently the H-L function is much too diffuse, 
giving 1{;2 only about half its proper value in the 
region of importance, and a corresponding ex­
cessive value in more remote regions in order to 
preserve normalization. Between the other func­
tions no systematic differences are conspicuous 
except when we compare points in phase-space 
for which the elliptical coordinates of the two 
electrons are respectively the same, but the 
differences in azimuth, and hence the inter­
electronic separations, are different. Columns 3 

8 E. A. Hylleraas, Zeits. f. Physik 71, 739 (1931). 
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GROUND STATE OF THE HYDROGEN MOLECULE 829 

and 4, 5 and 6, offer such comparisons. Here the 
present functions show their characteristic ad­
vantage of being able to assume smaller values 
for the smaller electronic separations. 

The discrepancies are in general in good 
agreement with Eckart's4 criterion, which can 
be thus stated: the root-mean-square error in I/; 
is equal to (E/ AE)', where E is the error in the 
calculated energy, and AE represents a kind of 
average of the separation between the lowest 
energy level and the other levels of the same 
symmetry. According to Mulliken,6 the second 
lowest 1 ~g + state has an energy about 20 volts 
above the ground state (for R= 1.4). The state 
of complete ionization of the fixed-center mole­
cule would evidently have the positive absolute 
energy 19.3 volts (due to nuclear repulsion), or 
51 volts above the ground state. If we take AE 
as 35 volts, E as 1.8, 0.71, 0.22, 0.05, and 0.03 
volts for the five functions, respectively, the 
mean errors should be 23 percent, 14 percent, 
8 percent, 4 percent, and 3 percent. The errors 
in 1/;2, and presumably in quantities calculated 
by its aid, will be double these figures. 

Corroboratory evidence is offered by the values 
of (H -E) 1/;. This quantity, which vanishes for 
the correct function, seems on the basis of five 
computed points to tend to amount to something 
like 80 percent, 40 percent, 12 percent, 9 percent, 
6 percent, of 1/;. Reasoning similar to Eckart's 
(see Appendix) leads to the conclusion that the 
root-mean-square average of these ratios should 
be somewhat greater than (EXAE)l, or 29 per­
cent, 19 percent, 10 percent,S percent, 4 percent, 
respectively. The magnitude of (H - E) I/; /if; 
varies greatly from point to point, but at each 
point there is a clear tendency for the values to 
run proportional to the square-roots of the 
assumed energy errors, thus indicating that those 
errors are indeed of the right order of magnitude, 
and that the correct function would give the 
experimental value. 

It is instructive to see what happens when the 
electrons coincide and r12 = O. Since the term 
1/r12 in the potential energy becomes infinite, 
Schrodinger's equation requires either that I/; 
vanish or that a cancelling infinite term arise 
from the Laplacian or kinetic energy part of the 
operator H. The second alternative is evidently 
the correct one. In the fifth column of Table III, 

the entries under (H - E) I/; show the coefficient 
of the 1/ p term in HI/;, which outweighs all 
other terms as p becomes small. In the H-L 
and Rosen functions, this term comes solely 
from the potential energy; in the series functions, 
especially the 13-term function, cancellation by, 
a term from the Laplacian is approximately 
complete. The function itself shows no sign of 
approaching zero as it is made more accurate. 

In order to see whether still lower energy 
values could be obtained by varying I) and/or R, 
we computed a number of energies for different 
values of these quantities, using the same eleven 
terms in the series. As a basis of comparison, we 
took as "observed" values those given by a 
Morse curve constructed as recommended by 
Mulliken, 

taking D,=4.73 e.v., w.=4375cm-1, r.= 1.40 aH. 

M=0.8309X10-24 g. 

TABLE IV. 

R 1.2 1.3 1.4. 1.5 1.6 1.7 

Binding {O =0.875 -4.67 -4.63 -4.52 -4.35 
energy. 0 =0.75 -4.41 -4.62 -4.68 -4.63 -4.49 
electron- Morse -4.49 -4.67 -4.73 -4.68 -4.57 -4.40 

volts 

The results are summarized in Table IV. The 
significance of these results will best be seen 
from the graph, Fig. 1. It will be noticed, first, 
that the choice already discussed, I) = 0.75, R 

-48L-____ k-____ ~ ____ ~ ____ ~ ____ ~ 

12 13 1..4 1.5 1.6 

FIG. 1. Energy of H2 in electron-volts, against separation 
of the nuclei, in Bohr radii. (Energy of dissociated molecule 
taken as zero.) Lowest curve is "experimental" Morse 
curve. Circle indicates point computed with 8=0.75, 11-
term function. Cross indicates point computed with 
0=0.875, ll-term function. Double circle indicates point 
computed with 0=0.75, 13-term function. 
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830 H. M. JAMES AND A. S. COOLIDGE 

TABLE V. 

Coefficients 
.................. 0=0.75 ................. . ................ 0=0.875 ................. 

Terms R=1.2 R=1.3 R=1.4 R=1.5 R=1.4 R=1.5 R=1.6 R=1.7 

[OOOOOJ 2.64085 2.47282 2.29326 2.10831 2.55009 2.42055 2.28454 2.14343 
[00020J 1.05889 1.14862 1.19526 1.20876 1.32769 1.46843 1.56080 1.61252 
[00110J -0.35865 -0.44227 -0.49921 -0.53385 -0.48136 -0.59679 -0.68500 -0.74964 
[10000J -0.75010 -0.82703 -0.86693 -0.87515 -0.76638 -0.84500 -0.89956 -0.92919 
[10200J -0.07001 -0.10926 -0.13656 -0.15443 -0.06026 -0.12001 -0.16569 -0.19941 
[10020J -0.00474 -0.04501 -0.07214 -0.08931 +0.03746 -0.02644 -0.07409 -0.10817 
[10110J 0.05723 0.10936 0.14330 0.16388 0.03528 0.11560 0.17625 0.22060 
[20000J 0.06082 0.06100 0.06621 0.07168 0.07933 0.07208 0.07421 0.07970 
[OOOOlj 0.46092 0.39769 0.33977 0.28909 0.54697 .0.48577 0.42713 0.37287 
[00111 -0.01097 -0.02408 -0.03143 -0.03508 -0.00316 -0.02137 -0.03420 -0.04269 
[00002J -0.02616 -0.02596 -0.02456 -0.02264 -0.03099 -0.03198 -0.03135 -0.02974 

= 1.4, gives the lowest energy of any calculated. 
Second, that the curve for 8 = 0.75 lies parallel 
to the Morse curve and 0.05 above it at R = 1.4, 
while the same is true of the curve for 8=0.875 
for R = 1.6. In view of the small effect of changes 
in 8, it seems safe to conclude that, within the 
region studied, and to an accuracy of 0.01 v.e., 
the envelope of a family of curves having various 
8 values would be given by calculating the 
energy for each R with 28 = 1.08R, and that this 
envelope would lie 0.05 v.e. above the observed 
Morse curve. It follows that the calculated 
equilibrium distance and fundamental vibration 
frequency agree sensibly with the observed. It 
must be admitted, however, that the cogency of 
this reasoning would be much re-enforced by an 
actual computation with 8 = 0.625, say, in order 
to exclude the conceivable possibility that for 
some R near 1.4 a still lower result might 
come out. 

The coefficients of each term in the series 
were computed for all cases. They vary in a 
regular manner as Rand 8 are changed, showing 
no such sharp maxima or minima as the param­
eters in Rosen's paper. They are shown in 
Table V. 

OTHER POSSIBLE ApPLICATIONS 

The excited 2: states of H2 which, like the 
normal state, are singlet, with wave functions 
symmetrical in the nuclei, can be attacked by 
the same general method. Hylleraas and Und­
heim 9 have shown that the second lowest root 
of the secular equation is an upper limit for the 

9 E. A. Hylleraas and B. Undheim, Zeits. f. Physik 65, 
759 (1930). 

energy of the second lowest state of the given 
symmetry, and so on. Thus, by investigating 
the values of the higher roots for various choices 
of Rand 8 we may hope to gain approximations 
to the potential curves for the excited states. 
Of course, this may demand the use of more 
terms than are needed for the ground state, or 
even the use of the exponential e-OlXI-O.X. in 
place of e-o(X1+X.). The various singlet 2: states 
antisymmetric in the nuclei can be investigated in 
the same way, by using those terms in the series 
with j+k odd, and the triplet 2: states by using 
the series in which differences instead of sums 
occur: 

Once the computation for the singlet states has 
been carried out, the triplet states can be 
treated with very little labor. Some work on 
excited H2 has been done in this laboratory, and 
will be communicated later. So far, the results 
are disappointing. 

In applying a similar method to molecules 
with but two electrons outside closed shells, 
one would attempt to represent the inner shells 
by the usual atomic functions, the valence 
electrons by a series function. When only terms 
with p = 0 are used, the work is straightforward 
and not too difficult. The introduction of the 
terms with r12 involves the evaluation of some 
exceedingly formidable integrals, and it seems 
that some modification of these terms will be 
needed. This is now being investigated in relation 
to the normal states of LiH and Li2. 
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MATHEMATICAL ApPENDIX 

Evaluation of matrix components 
Consider the matrix components of unity and of energy arising between any two terms in the 

series from which the wave function is constructed, say the terms [manajakaPa] and [mbnbjbkbhJ. 
Each term contains two sub-terms, which we may designate 1/;a, 1/;a', and 1/;b, 1/;b', respectively; they 
differ by interchange of indices between electrons. The matrix component of unity will have the form 

It will be sufficient to consider the first of these integrals, which we may call Sab. Four similarly 
related integrals will form the matrix component of the energy; the first of these will be 

Owing to the fact that the complete terms 1/;a+1/;a' and 1/;b+1/;b' contain the coordinates of the 
two electrons symmetrically, we may use instead the simpler integrals 

Then 

In performing these integrations, we were not able to utilize the device adopted by Hylleraas for 
He, using p directly as one of the variables of integration. We found it necessary to transform the 
powers of p into elliptical coordinates, by means of the equations 

p2 = A12+ A22+ ,u12+ ,u22 - 2 - 2AIA2,u1,u2 - 2[ (A12 -1) (A22 -1) (1- ,u12) (1- ,u22)]! cos (IPI - IP2), 

Now, the required quantities may all be found in terms of integrals defined thus: 

X(m, n, j, 'k, p) == 4~2 J J J J J J (A12 - ,u12) e-28 (X,H 2
) AlmA2n,uli,u2kppdAldA2d,uld,u2d IP1dIP2. 

The indices are all zero or positive, except that P may have the value -1. 
Remembering that dV1dV2= (1/64)R6(A12-,u12) (A22_,u22)dAldA2d,uld,u2d IP1dIP2, we find at once 

Sab = (1/64)R6[X(ma+mb, na+nb+2, ja+jb, ka+kb' Pa+Pb) 

-X(ma+mb, na+nb,ja+jb, ka+kb+2, Pa+Pb)]. 
We shall abbreviate this to 

Sab= (1/64)R6[X(02000) -X(00020)]. 

10 C. Zener and V. Guillemin, Jr., Phys. Rev. 34, 999 (1929). 
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In hab', the only troublesome part is that arising from the Laplacian. Insofar as the coordinates 
of electron 2 are concerned, we may write if!b as constant XL h(A2) M b(J.t2)Pb(P) , Then 

'i12zif!bNb = 'i12zL b/ Lb+V'Z2 Mb/ M b+V'Z2Pb/ P b+ 2V'zLb' V'2P b/ LbPb+ 2V'2Mb' V'2P b/ M oPb; 

(since the term in V'zLvV'z.Mb always vanishes, the coordinates being orthogonal). Now, in general, 

v2J(p) = [4/R2pZJX[2pdj/dp+pzd2J/dp2J; 

V'2j(A, J.t) = [4/R2(A2 - J.tZ) JX [2X aj /aA+ (AZ -1)a2j /aAz- 2J.t aj /aJ.t+ (1- J.tZ)rj2j/aJ.tzJ; 

V'j(A, J.t) . Vg(A, J.t, rp) = [4/ RZ(X2 - J.tZ) J X [(A2-1) (aj/aA) (ag/aA) + (1- J.tZ) (aj jaJ.t) (agjaJ.t)]. 

Putting 

we find 
[(A22-1)/Xz]aPb/oAz = !PoPbp-Z[pZ-V+A22- J.t12

- J.tZ2+ 2AJ,ul,uZ/Az] 

[(1- J.(22) / J.t2]aPb/ OJ.t2 = - !PbP bP-2[p2 - AJ2 - A22 - ,u12+ ,u22+ 2AIA2,ul/ ,u2] 
and finally 

if!aV22if!b = [4if!aif!b/RZ(A22- J,tz2)] X {2(nb-oAZ) + (1-1/AzZ) (no(nb-1) - 20nbA2+ozAz2) 

- 2kb+(1/ J.tzz-l)(kb(kb-1) + (Pb/ p2)[(Pb+ 1) (Az2
- ,u22) 

+ (nb-oAZ) (pZ - AI2 +Az2 - ,ulz - J.tZ2+ 2X1J.tIJ.tZ/Az) - kb(p2 - A12- A22 - ,uIZ+,u22+ 2AIA2J.tl/ J.l2)]}. 

This can evidently be integrated in terms of the functions X previously defined. But a somewhat 
shorter expression for the integral can be found, By Greene's theorem, for properly continuous 
functions which vanish canonically at infinity, 

We note 

V2if!a' V'zif!bNaif!b = V'zLa· VZLb/ LaLb+V'zMa· V'2J11fb/ MaMb+ VZPa • V'zPb/ PaPb+ V'zL .. . V2P b/ LaPb 

+V2M,,'V2Pb/M .. Pb+V2Lb'VzPa/LbPa+V2Mb'V'zP .. /MbP ... 

When this is evaluated, some cancellation occurs, and the final formula is 

h'ab= (1/64)R5{X(02000) -X(00020) +2X(0200-1) -2X(0002-1) -8X(01000)} 

- (1/64)R4{ [(n,,-nb)2 (ka -kb)2+(n,,+nb) - (k .. +kb)+(P,,-Pb)(na-nb-k,,+kb)]X(OOOOO) 

-40X(01000) - [(na -nb)2- (na+nb) ]X(O - 2000) +[(k,,- kb)Z- (k,,+kb) ]X(OOO- 20) 

+ [(Po. - Pb)z+pa+pb+ (Po. - Pb) (n" -nb+ka - kb) ][X(0200 - 2) - X(0002 - 2)] 

- (Pa-pb)(na-nb- (ka -kb»[X(2000-2)+X(0020-2)] 

+2(pa-pb)(n,,-nb)X(1 111-2) - 2(Pa-Pb)(k,,-kb)X(111-1- 2)}. 

(The same abbreviation as before has been made in the argument of the X's,) 
In discussing the computation of these integrals, it will be expedient to introduce the abbreviation 

IX = 20. Let us define the more general function 

X"(m, n,j, k, p) =Z"(m+2, n,j, k, p) -Zv(m, n,j+2, k, p); 

Z'(m, n, j, k, p) == (1/411"2) f f f f f f e-a (Al+A.) AlmAz"J.tliJ,tzkpp M" cos' (rpl - rpz)dA1dAzdJ.t1dJ.lzdrp1drpz; 

M2 = (X1Z -1) (XZZ -1) (1- J.tIZ) (1- J,tzZ). 
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This evidently reduces to the previously defined X(m, n,j, k, p) when p=O. 
For p=O, we have 

Z(m, n,j, k, 0) =4Am(a)An(a)/(j+l)(k+l), 

Z'(m, n,j, k, 0) =0, 

833 

when j and k are both even; otherwise the integrals vanish. (Here, as usual, A n( a) == f 1 OOA ne-a).dA. 
For details of computation and tables, see Rosen's paper.H ) 

For p = - I, the Neumann expansion of 1/ p yields 

'" Z(m, n,j, k, -1) = L (2T+l)RT(j)RT(k)HT(m, n, a), 
T=O 

00 

Z'(m, n,j, k, -1) = - L [1/T(T+l)]R/(j)R/(k) X [(2T+l)/T(T+1)]H/(m, n, a), 
T=1 

'" Z"(m, n, j, k, -1) =! L [1/(2T+3) (2T-l) (T+ 2) (T+ 1)T(r-l) ]R/'(j)R/'(k) 
T=2 

X[(2T+3)(2T+l)(2T-l)/(r+2)(T+l)T(T-l)]H/'(m, n, a) 

'" +! L (2T+1)(RT(j) -RT(j+2)(RT(k) -RT(k+2») 
T=O 

Here, RTP(j) == f!~dJ.l-(I- J.l-2)pI2PTP(J.I-)J.l-i. Rosen has discussed and tabulated this integral for p = o. 
The other cases are readily obtained from the elementary theory of associated harmonics. They 
exist only for even or for odd T, according asj+p is even or odd, and vanish for all values of T greater 
than j+ p, so that the summation over T contains at most a few terms. 

The other integral 

H?(m, n, a) == J:oo dA1J:'" dA2[(A12-1) (A22 -1) ]PI2P?(:) Q;(::) A1m A2ne- a ().lH,) 

is familiar in molecular problems, at least for p = o. Rosen gives a method for computing Ho(m, n, a) 
(his formula AI9). With the aid of his function SCm, n, a) (formulas A13, A14), and the following 
recurrence relations, other values can be found readily: 

H1(m, n, a) =Ho(m+1, n+l, a) -SCm, n+l, a) -Sen, m+1, a). 

HT(m, n, a) = (I/T2)[(2T-l)2HT_1(m+l, n+l, a)+(r-l)2HT_2(m, n, a) 

-(2T-l)(2T-3)(HT_2(m+2, n, a)+HT- 2(m, n+2, a»)+2(2r-1)(2T-S)HT_3(m+l, n+l, a) 

-(2T-l)(2T-7)(HT_4(m+2, n, a)+HT_4(m, n+2, a))+2(2T-l)(2T-9)HT_5(m+l, n+l, a) 

- ... ] until either 

(for even T) -(2T-1)[Ho(m+2, n, a)+Ho(m, n+2, a)-S(m+l, n, a)-S(n+l, m, a)] 
for T> 1. 

(for odd r) +(2T-l)[2Ho(m+l, n+ I, a) -SCm, n+ I, a) -Sen, m+l, a)]. 

[(2T+ 1)/r(T+ 1)]H/(m, n, a) = (T+ I)HT+1(m, n, a) - (2r+ l)HT(m+ I, n+ 1, a) +THT_1(m, n, a). 

t1 N. Rosen, Phys. Rev. 38,255 (1931). 
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[(27+3) (27+ 1) (27 -1) /(7+2) (7+ 1)7(7-1) ]H/'(m,n, a) 

=7(27-1)[(27+3)/(7+1)(7+2)]H'r+l(m, n, a) 

-(27+3) (27-1)[(27+ 1) /7(7+ 1) ]H/(m+ 1, n+ 1, a) + (7+ 1) (27+3) [(27-1)/(7-1)7 ]H' r-l(m, n, a). 

(The factors in brackets [ ] before H' and HI! are left in explicitly because for purposes of compu­
tation they may conveniently be considered part of the functions.) 

When Xv has been tabulated for p = 0 and p = -1, it can easily be found for positive values of p 
by means of the relation (with the usual abbreviation) 

Xv(00002) = Xv(20000) + Xv(02000) + X'(00200) + XV(00020) - 2Xv(OOOOO) 

-2X'(11110) _2Xv+l(OOOOO). 

A corresponding relation holds also for ZV. 

Solution of secular equation, and determination of constants 
The complexity of the secular equation of course necessitates determination of the roots by trial 

and error. The following process seems to be the simplest available, and puts the work in a particu­
larly satisfactory form for the determination of the constants. Choosing a trial value of A in the 
proper neighborhood (known from experiment, or experience with a similar function), we may write 
the s equations which must be satisfied by the coefficients C in the form 

• 
"L,dirC=O, i=1, 2, '" s, 
r=1 

This set of equations is equivalent to another set, obtained from it by progressive elimination of 
the variables Cn in which there is one equation involving s of the C's, one in (s-1)C's, and so on. 
Let these equations be 

• 
"L,DirCr=O, i=1,2,···s. 
r=1 

The D's are conveniently found by the recurrence relation 

n-l 

Dnr=dn<- "L,D.rDpn/D." 
,=1 

starting with D1r = dlT' Because the d's form a symmetrical matrix, it will be found that D lIr vanishes 
automatically for 7 < n. A convenient numerical check is provided by the fact that the quantities 
~rDn< should be obtainable from the quantities ~rdn< by means of the same recurrence relation. 

If A has been properly chosen, the last factor D •• will vanish, and the last equation D •• e. = 0 will 
permit C. to be set arbitrarily equal to 1 (or any other number). Since the secular determinant is 
easily seen to be just the product of the diagonal factors D ii, the value of A so determined is evi­
dently that which makes the determinant vanish. The remaining C's may be immediately determined 
by successively substituting C. in the (s-1)st equation, C. and C8 - 1 in the (s-2)nd, and so on. 
The provisional coefficients are then used to compute f f d V1d V21f2; upon division by the square 
root of this quantity, a set of normalized coefficients is obtained. 

Should Dnn vanish for n <s, the meaning is that the value of A chosen happens to be an exact 
solution of the secular equation containing only the first n terms. In this case (and also in practise 
if Dnn is very small), the procedure for subsequent D's breaks down. If, nevertheless, it is desired 
to find the value of the whole determinant, the order of the original terms must be changed, placing 
at least one of the originally first n terms in a position later than the nth. 
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In general, of course, the chosen value of A will prove incorrect, the last factor, and therefore the 
whole determinant, failing to vanish. In order to find a value of A making D •• negligibly small, the 
above process is carried out for two assumed values of A lying rather near the root, and preferably 
enclosing it, as shown by the last factor having opposite signs in the two cases. The root can then 
be quite accurately determined by considering the value of the determinant (not the last factor) as 
linear in X, and interpolating. If the coefficients are desired, they must be obtained by a new compu­
tation using the interpolated X, as it is not safe to try to interpolate the individual D's which deter­
mine the coefficients. 

It may be mentioned that by this method an ll-row determinant with six significant figures can 
be evaluated and checked by an experienced computer in a little over two hours. 

Order of magnitude of (H-E)if; 

Suppose our approximate wave function if; expanded in terms of the correct wave functions if;n 
of proper symmetry, with coefficients an, such that a1 is nearly unity, and '1; na n2 = 1. Let E be the 
energy calculated, and En the correct energy for the nth function. Then 

=a12E 1+EL:aT
2 =a12E1+E(1-a12), 

T=2 

where E is some value between E2 and Eoo" Similarly we can show that 

02 = f [(H -E)if;J2d V =a12(E1-E)2+(E-E)2(1-a12), 

Eliminating l-a12 gives 02 = (E1-E)[E1-E+ I (E-E)2- (E1-E)21 j(E1-E)]. 

= -
Assuming that (E-E)j(E-E1) is of the order of unity, and neglecting higher powers of E =E-E1, 

- = -
we have 02 ~ (E1 - E) (E1 - E). This is a lower limit, since it can easily be shown that E > E. 

Note added in proof: 

A minute error has been found, affecting the energy by 0.003 e.v. Corrected coefficients will 
be published as soon as possible. 
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