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M12e  “Coupled pendulums and degree of coupling” 
 

 
Tasks 

 

1. Measure for three different positions of the coupling spring: 

      a) the oscillation period T1 of in-phase oscillations, 

      b) the oscillation period T2 of out-of-phase oscillations, 

c) the oscillation period T of the ‘beat’ mode oscillation and 

d) the beat period TS. 

 

2. Calculate the beat oscillation period T and the beat period TSl from the measured values T1 and T2; 

compare calculated and measured results. 

 

3. Calculate the degree of coupling using T1 and T2 as well as the measured values of T and TS for 

three positions of the coupling spring. Compare and discuss the uncertainty of the results. 

 

4. Study the influence of the coupling spring position on the ratio of the oscillation periods T1 and T2 

for several different positions of the spring analogously to task 1. Determine the spring constant of 

the coupling spring. 

  

Literature 

 

Physics, M. Alonso & J. F. Finn, Chap. 10.10 

The Physics of Vibration and Waves, H.  J. Pain, Wiley 1968, Chap. 3 

Physikalisches Praktikum, 13. Auflage, Hrsg. W. Schenk, F. Kremer, Mechanik, 2.0, 2.4 

http://www.cmt.phys.kyushu-u.ac.jp/~M.Sakurai/phys/physmath/union-e.html (Java Applet) 

 

Accessories    

 

Coupled pendulums, PC-workstation with PACs-Interface 

 

Keywords for preparation 

 

- Physical pendulum, equation of motion, oscillation period 

- Coupled pendulums, equation of motion, spring constant, restoring moment, differential        

  equations  

- Fundamental (in-phase and out-of-phase) oscillation modes, degree of coupling 

- Beat oscillation, law of energy conservation, phase jump 
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Remarks  

 

At the beginning of the experiment the demonstrator gives a brief introduction to the PACs-interface 

system. 

For task 4 derive the relation T1
2/T2

2 = f (lF2). For graphical representation use the values measured in 

tasks 1 and 4. Calculate the spring constant from the slope. 

 

Fig. 1 Two coupled pendulums 

 

 

 

 

 

 

 

 

 

 

 

Torque M0 of each pendulum:  

In the initial condition =|-| the pendulums are at rest and  

 

0M D ,           (1) 

 

where D describes the restoring moment of the two identical stiff pendulums.   

        

After deflections by 1 (pendulum 1) and 2 (pendulum 2) the restoring torques are 

 

pendulum 1:  1( )D      

spring:  0 1 2*( )M D            (2) 

pendulum 2:  2( )D     

 

D* is the restoring moment of the spring. 

 

For the net value of the torque acting on pendulum 1 one obtains with Eq. (1) 

 

1 0 2 1 1 1 2( ) *( ) *( )D M D D D               .      (3) 
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Analogously one obtains for pendulum 2: 

 

2 0 2 1 2 1 2( ) *( ) *( )D M D D D               .      (4) 

 

The symbols A and B in Fig. 1 denote the axis of rotation. The following equations describe the 

motion of the coupled pendulums: 
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With substitutions 1 1 2 2 1 2,         (normal coordinates) and assuming that the pendulums 

are identical (the same restoring moments D = D1 = D2 and moments of inertia I=I1=I2) one obtains the 

simplified equations 
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with the solutions 

 

1 1 1 1 1 2 2 2 2 2cos sin , cos sina t b t a t b t          .      (7-1) 

 

With the original angles 1 and 2  one obtains 

 

1 1 1 1 1 2 2 2 2

1
( cos sin cos sin )

2
a t b t a t b t        , 

            (7-2) 

2 1 1 1 1 2 2 2 2

1
( cos sin cos sin )

2
a t b t a t b t        . 

 

The circular frequencies of the normal modes in Eqs. (7-1) and (7-2) are 
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Depending on the initial conditions one might distinguish three different solutions:  
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(i) 'In phase mode'  
 

1(0)=2(0)=0 , 1 2d d
(0) (0) 0

d dt t

 
  , a1=20, b1= a2 = b2 =0, 1=2=0 cos 1t .   (9) 

The two pendulums oscillate with the same period T1. (Check this experimentally.) 

 

(ii) 'Out of phase mode':  
 

1(0)=-2(0)=0 , 1 2d d
(0) (0) 0

d dt t

 
  , a2=20, a1= b1 = b2 =0, 1=-2=0 cos 2 t .  (10) 

 

The two pendulums oscillate with the same period T2 < T1 , but in opposite directions (phase shift ). 

 

(iii) 'Beat mode':  

 

1(0)=0, 2(0)=0 , 1 2d d
(0) (0) 0

d dt t

 
  , a1=- a2=0, b1 = b2 =0 .     (11) 

 

0
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   
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   
    (13) 

 

 

In general the coupled oscillations in the 'beat mode' show a complex behavior, but for weak 

coupling (D>>D*; how you can check that experimentally?) you will observe an oscillation with the 

circular frequency ω = (ω1+ω2)/2 modulated by the 'beat frequency' ωS = (ω2-ω1). The corresponding 

periods are then 

 

2 1

1 1 1 1

2T T T

 
  

 
 and       

2 1

1 1 1

ST T T
   .      (14) 

 

Using the definition of the 'degree of coupling'  

 

*

*

D
k

D D



            (15) 

 

and Eqs. (8) one can express the latter equation by the measured periods T1 and T2: 

 
2 2 2 2
2 1 1 2
2 2 2 2
2 1 1 2

T T
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This can be easily rewritten to express the degree of coupling by T and TS; derive the corresponding 

equation. 

 

Fig 2.  Beat oscillation of one pendulum in the case of weak coupling. The vertical axis gives the 

amplitude in arbitrary units while the horizontal axis measures time. 

 

 

In the 4th task study the influence of the coupling spring position on the ratio of the oscillation 

periods of in-phase and out-of-phase oscillations using the equation 

 
2

1
2

2

2 * *
1 2

D DT D

T D D


         (derive it),        (17) 

 

In Eq. (17) D is the restoring moment of the two identical pendulums and D* the restoring moment 

of the spring. For the restoring moment of the spring derive the relationship 

 
2
F*D l c .   (18) 

 

lF is the distance between the rotation axis and the coupling position of the spring. 

 

The coupling or force constant of the spring can be determined by a simple experiment using 

Hooke’s law. The directional moment of the pendulums is provided at the workplace. 
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Data for pendulums: 
 

Place  Nr. number of pendulum serial 
number 

m (kg) sA (m) 

1 I 034 1,318 0,725 

1 II 041 1,325 0,724 

2 III 040 1,308 0,582 

2 IV 036 1,304 0,582 

3 V K05 1,338 0,845 

3 VI K12 1,339 0,845 

4 VII - 1,329 0,747 

4 VIII - 1,330 0,747 

m ... mass of pendulum 
sA ... distance center of gravity to rotation axis 
 
 

FS pendulum I,II  lF  (m) pendulum III,IV lF  (m) pendulum V,VI  lF  (m) pendulum VII,VIII lF  (m)  

1 0,282 0,282 0,282 0,282  

2 0,382 0,382 0,382 0,382  

3 0,482 0,482 0,482 0,482  

4 0,531 0,531 0,582 0,582  

5 0,582 0,582 0,682 0,682  

6 0,682 0,682 0,782 0,782  

7 0,882 0,782 0,882 0,882  

8 --- 0,882 1,022 1,022  

9 1,022 1,022    

FS ... number of spring position 
lF ... distance spring position to rotation axis 
 
 


