1. Introduction

There are many cases where it looks as though an inflectional exponent can trigger non-local phonological changes. In the present paper, we will consider de-spirantization apparently triggered by non-local agreement exponents in Barwar Aramaic (see Khan (2008)), Saus-surean accent shift apparently triggered by non-local person/number exponents in Lithuanian (see Kushnir (2018)), ni-insertion apparently triggered by non-local possessive markers in Quechua (see Myler (2013)), ruki rule application apparently triggered on verb roots by non-local prefixes in Sanskrit (see Kiparsky (1982)), and vowel harmony apparently applying with non-local Q morphemes in Kazakh (see Bowman & Lokshin (2014)). These kinds of phenomena have standardly been analyzed either in terms of non-local phonological operations, or by resort to counter-cyclic morphological operations like interfixation. In contrast, we will argue that phonological reflexes involving seemingly non-local morphological exponents can and should be captured in a strictly local way, by postulating movement operations in an autonomous morphological component of grammar. More specifically, we contend that morphological movement of exponents basically comes for free in the approach to inflectional morphology that is developed in Müller (2018). This approach relies on harmonic serialism (see McCarthy (2016)), a strictly derivational version of optimality theory (see Prince & Smolensky (2004)). We will show that morphological movement of exponents follows without further ado from the interaction of independently motivated constraints on structure-building (centered around morphological arrays) and linearization of morphological exponents in harmonic serialism, given (i) a certain pattern of ranking of these constraints, and (ii) the general restriction in harmonic serialism that competing outputs can differ from their common input by carrying out at most one operation. Morphological movement will in turn be argued to counter-bleed the phonological processes in all the relevant contexts because a phonological cycle is triggered directly upon exhausting the morphological arrays.

We will proceed as follows. In section 2, we highlight cases of phonological operations triggered by non-local morphological exponents in Aramaic, Lithuanian, Quechua, Sanskrit, and Kazakh. In section 3, the background assumptions about inflectional morphology in harmonic serialism are introduced, and it is illustrated how the concept of morphological movement of exponents follows from it. In section 4, we show how the empirical evidence can be straightforwardly analyzed as instances of local phonology followed by morphological movement of exponents in an approach in terms of harmonic serialism, thereby giving rise to a phenomenon of phonological reflexes of morphological movement. Finally, in section 5 we discuss alternative accounts of the phenomenon.

2. Seemingly Non-Local Phonological Operations

2.1. Non-Local De-Spirantization in Barwar Aramaic

As observed by Khan (2008), there is a regular phonological process in Christian Barwar Aramaic that turns the dental fricatives /θ/ and /ð/ into dental stops [t] and [d] if they directly precede coronal sonorants, which in the language are the nasal /n/ and the lateral /l/. We will call this process de-spirantization. In (1), the underlying dental fricative of the verb /ʔiθ/ (‘to be’) precedes a lateral is thus de-spirantized.
The general, local process of de-spirantization can informally be captured by a rule that changes dental fricatives into stops before coronal /n/ and /l/: ∂,θ → d,t /__1,n.

Interestingly, de-spirantization seems to apply non-locally across the tense/aspect exponent wa (‘REMOTE’); see (2).

(2) [?itwale ?ørwe rabe]
/ʔiʔ-wa-le ؤر-w-e rab-e/
be.there-REMOTE-3SG.M.SBJ sheep-PL many-PL
‘He had many sheep.’

However, there is good evidence that de-spirantization is a genuinely local process that occurs exceptionless in a phonologically specified context. In (3-a), imperfective ⟨a⟩ is realized between the first and second radical.¹ This leaves the second radical /∂/ adjacent to the third one. For the root /j∂l/ ‘to lay eggs’, this yields a dental fricative adjacent to a coronal sonorant, viz., /l/. This creates the right, local condition for the de-spirantization to apply, turning /∂/ into [d]. (3-b) shows the same root with perfective ⟨i⟩, which shows up between the second and third radicals. The /∂/ is able to surface faithfully because the lateral is not adjacent.²

(3) a. [jadli] b. [ðilla]
/j(⟨a⟩ d∂l-i)/ /j(⟨i⟩ l-∂a)/
lay.eggs(PRS)-PL lay.eggs(PAST)-3SG.F.SBJ
‘They lay eggs.’ ‘She laid eggs.’

(4) shows the same alternation, albeit with an epenthetic vowel: Three-consonant (CCC) clusters must be broken up by a vowel.³ In (4-a), the vowel is inserted between first and the second members of the cluster, which leaves the adjacency of the dental fricative and the sonorant intact. This again derives the right context for de-sonorization to apply. In the feminine form for the same root, concatenation creates a four consonant cluster; cf. (4-b). In four-consonant clusters, the locus of epenthesis is no longer optional: It must be between the second and third members of the cluster, in this case between /∂/ and /n/. Here, epenthesis bleeds the application of de-spirantization.

(4) a. [kaw∂dna] b. [kaw∂onta]
/kaw∂-n-a/ /kaw∂-n-τa/
ass-M.SG ass-F.SG
‘ass’ ‘she-ass’

The instances of de-spirantization that apply across morpheme boundaries behave exactly like the ones in roots that we have seen so far. Consider, for instance, the so-called l-suffixes, which indicate subject agreement in the perfective aspect and object agreement in imperfective environments. These exponents are triggers of de-spirantization (however, in the

¹ Barwar Aramaic is a Semitic language with root-and-pattern morphology, at least in the verbal domain. Verb roots consist of three to four consonants, so-called radicals; intervening vowels either have a separate morphological affiliation or are epenthetic.
² The first radical /j/ is deleted by a separate process.
³ As noted by Khan (2008, 110), the site of vowel insertion is variable.
imperfective aspect these affixes are rarely directly adjacent to the root). In (5), the last radical of the verb roots (/⟩ and /⟩, respectively) is adjacent to the l-exponent, and accordingly undergoes de-spirantization.

(5) a. [tpitle] /tp⟩ ⟨i⟩ 0-le/ sneeze ⟨PST⟩ -3SG.M.SBJ ‘He sneezed.’
b. [gridle] /gr⟩ ⟨i⟩ 0-le/ scrub ⟨PST⟩ -3SG.M.SBJ ‘He scrubbed.’

If an object agreement suffix intervenes between the root and the l-suffix, de-spirantization is transparently blocked; see (6). The intervening exponent blocks the process exactly like the vowels encoding perfectivity and imperfectivity in (3) and the epenthetic vowel in (4) do.

(6) [t⟩ ⟨i⟩ 0-a-le/ chase.away ⟨PAST⟩ -F.OBJ-3SG.M.SBJ ‘He chased her away.’

However, there is an instance in which de-spirantization unexpectedly applies non-locally across an intervening morphological exponent. The tense/aspect exponent wa (‘REMOTE’) is linearized between the root and the l-suffixes. As (2) has shown for /⟩, and as (7) shows for /⟩, a root-final dental fricative is nonetheless (optionally) de-spirantized in this environment. Since wa intervenes, the phonological context for de-spirantization is not met on the surface. The process thus over-applies non-locally in context of the remoteness exponent wa.

(7) [t⟩ ⟨i⟩ 0-wa-le/ chase.away ⟨PAST⟩ -REMOTE-3SG.SBJ ‘He had chased away.’

There are no other potential triggers of de-spirantization in (2) and (7) beyond the non-local l-suffix. In particular, the operation does not otherwise take place if a dental fricative precedes a bilabial glide – neither as a general phonological process (see (8-a)), nor as a phonological process specific to the tense/aspect marker wa (see (8-b)).

(8) a. [ka0wa] /k⟩ ⟨a⟩ 0-w-a/ write ⟨PRS⟩ -3SG.F ‘She writes.’
b. [ʔi0wa] /ʔi0-wa/ be.there-REMOTE ‘There was.’

2.2. Non-Local Saussurean Accent Shift and Theme Vowels in Lithuanian

A similar phenomenon shows up with accent placement in Lithuanian; see Kushnir (2018), on which the following discussion is based. Phonological words in Lithuanian have one

\footnote{Note that there are no data in Khan’s study that would show whether de-spirantization occurs if the l-suffix is used in the present and thus encodes object (rather than subject) agreement. (i) might be expected to be a morphologically well-formed form in Barwar Aramaic. However, Khan (2008) does not give such forms for ⟨0⟩-/⟩-final roots.}

(i) qm ⟨a⟩ ⟨r⟩-wa-le PAST-chase.away ⟨PRS⟩ -REMOTE-3SG.M.OBJ ‘He chases him away.’
main stress; stress can be assigned to any mora in a word. Any morphological exponent can bear an inherent lexical accent. Normally, if a stem and an inflectional exponent are both pre-specified for accent, it is the accent on the stem that prevails; i.e., the left-most accent wins (the Basic Accentuation Principle). There is a systematic exception, though, which can be referred to as (the synchronic version of) Saussure’s Law (see Halle & Vergnaud (1987)): Whenever two underlying accents coincide on two subsequent moras word-finally, the surface accent is aligned with the right edge of the word. The effect of Saussure’s Law is illustrated in (9). In (9-a), neither mora on the accusative singular exponent /a a/ is pre-specified for accent, and main stress ends up on the stem. In (9-b), a mora of the locative singular exponent /E/ does bear inherent accent, but since the two moras that are associated with stress are separated by an intervening mora that is not, Saussure’s Law does not apply, and main stress goes on the stem again. In (9-c), there is a mora pre-specified for stress on the dative plural exponent /o o/, but still Saussure’s Law does not spring into action because the clash does not occur word-finally (there is yet another mora further to the right). However, in (9-d), with the Saussurean instrumental singular exponent /a/, there are two word-final adjacent moras (/k/ is not moraic here), and Saussure’s Law ensures that the main stress ends up on the inflectional exponent, rather than on the stem.

(9) a. ra_n_k + a_n_a → rank-aa (hand-ACC.SG)
 b. ká_m + É → káim-É (village-LOC.SG)
 c. ra_n_k + o_o_m_s → rank-ooms (hand-DAT.PL)
 d. ra_n_k + a → ranká (hand-INSTR.SG)

The verbal agreement markers /-u/ (1.SG) and /-i/ (2.SG) are also Saussurean affixes, like the instrumental singular case marker for nominals in (9-d). However, with verbs, there is an interesting complication: Between the root and the inflectional exponent encoding φ-features, there is a theme vowel; cf., e.g., /a/ in (10-ab). The short theme vowel /a/ is regularly deleted in front of a following exponent starting with a vowel, as in (10-cd).

(10) a. kás + a + mE → kaásamÉ (dig-1.PL.PRES)
 b. áug + a + mE → áug+a+mÉ (grow-1.PL.PRES)
 c. kás + [a→Æ] + û → kasú (dig-1.SG.PRES)
 d. áug + [a→Æ] + û → áugú (grow-1.SG.PRES)

In (10-c), it may look at first sight as though the context for application of Saussure’s Law can be created by theme vowel deletion (whereas no such issue arises in (10-d), where the two accent-bearing moras are too far away from one another). However, closer inspection reveals that this cannot be the whole story. In contrast to short theme vowels, long theme vowels in Lithuanian verb inflection are not deleted in front of vowels; they are merely reduced. Thus, /ee/ becomes [Æ] in front of the first and second person singular exponents, and /oo/ becomes [a]. Crucially, the Saussurean effect persists; “the accent shift takes place, disregarding the theme vowel entirely” (Kushnir (2018)). This is shown by the examples in (11-ab).

(11) a. kás + [ee→Æ] + û → kasâ (dig-1.SG.PAST)
 b. žín + [oo→a] + û → žina (know-1.SG.PAST)

Thus, just as with de-spirantization in Barwar Aramaic, Saussurean accent shift in Lithuanian verbs appears to be able to apply non-locally; given that the operation can independently be shown to depend on strict locality of the moras involved (see (9-b)), the conclusion suggests itself that intervening theme vowels behave as if they were not part of the structure at the point where the Saussurean shift takes place.
Another piece of evidence which seems to suggest non-local application of a phonological operation comes from Bolivian and Huallaga Quechua (see Bills et al. (1969), Weber (1989), and Myler (2013). In these languages, illegitimate sequences of phonological segments are repaired by epenthesis of CV. In some cases an epenthetic syllable appears even though conditions on its insertion are not met in the surface form and two morphological exponents that would give rise to a banned sequence are separated by another exponent. The resulting configuration is of the type Affix$_1$-CV-Affix$_2$-Affix$_3$, where the sequence Affix$_1$-Affix$_3$ is illegitimate and triggers epenthesis, but Affix$_1$-Affix$_2$ is not.\(^5\)

Let us start with conditions on epenthesis. The syllable ni is inserted between two morphological exponents to avoid a creation of super-heavy syllables (see Myler (2013, 191)). A syllable is super-heavy if its nucleus and coda consist of three or more moras. Short vowels and simple codas correspond to one mora; long vowels, diphthongs and complex codas correspond to two moras. Ni-insertion in Huallaga Quechua is illustrated in (12) and (13).

If a third person possessive suffix ni is added to a stem ending in a short vowel, the rhyme consists of two moras and epenthesis does not apply; see (12-a). If this exponent is attached to a stem ending in a consonant, as in (12-b), or a long vowel, as in (12-c), it triggers the insertion of ni.

(12) a. uma-n
 head-3POSS
 ‘his head’

b. mayur-ni-n
 older-NI-3POSS
 ‘my older (sibling)’

c. papa:-ni-n
 father-NI-3POSS
 ‘his father’

The same effect is caused by suffixes with the shape CCV(...); see (13).\(^6\) Two consonants at the beginning of an affix cannot be syllabified as the onset of a next syllable due to an additional restriction on complex onsets in Huallaga Quechua (cf. Weber (1989, 455)). This means that the first of the two consonants in the suffix has to belong to the previous syllable, which is unproblematic in (13-a). However, in (13-b), this would result in a trimoraic rhyme (consisting of *urn) unless ni-insertion takes place.

(13) a. uma-nchi
 head-1.POSS.INCL
 ‘our heads’

b. mayur-ni-nchi
 older-NI-3POSS.INCL
 ‘our sibling/siblings’

Weber (1976; 1989) analyzes ni-insertion as phonologically conditioned allomorphy of certain affixes. As an argument for this view he provides suffixes that do not follow the phonological restrictions described above. First, if the suffix yqoq is attached to a root ending in a consonant or a long vowel, it triggers insertion of ni even though there is no trimoraic rhyme in these cases. Second, ni never appears before the verbal suffixes yka and yku, and the unacceptable sequence of segments is resolved differently. Despite these facts we continue to analyze ni-insertion as a regular phonological process that prevents formation of impossible syllables, because the number of morphemes with exceptional behavior seems to be smaller under this view and because it is based on independently attested restrictions on syllable structures in Quechua.\(^7\)

Syllabic ni can also appear when two affixes that create the environment for its insertion are separated by the exponent lla ‘just’. The examples in (14) (from Myler (2013),

\(^5\) Unless indicated otherwise, all the data in this section are taken from Weber (1989).

\(^6\) Note that ch in (12) stands for a voiceless lamino-alveolar affricate (cf. Weber (1989, 452)).

\(^7\) Adelaar & Muysken (2004: 206) also analyze ni-insertion as a phonological process, but attribute it to resolution of otherwise illegitimate consonant clusters.
citing Bills et al. (1969)) and (15) show this for Bolivian Quechua and Huallaga Quechua, respectively. The presence of \textit{ni} is obligatory in Bolivian Quechua and optional in Huallaga Quechua. Note that the second person possessive used in (15) starts with two consonants /yki/, but the glide is deleted after /i/ in (15-b).

\begin{align}
\text{(14) a. } & \text{*wawa-s-lla-y} & \text{b. wawa-s-ni-lla-y} \\
& \text{child-PL-just-1.POSS} & \text{child-PL-\textit{NI}-just-1.POSS} \\
& \text{‘just my children’} & \\
\text{(15) a. } & \text{*kikish-yki} & \text{b. kikish-ni-ki} \\
& \text{armpit-2.POSS} & \text{armpit-\textit{NI}-2.POSS} \\
& \text{‘your armpit’} & \\
& \text{c. } & \text{d. e. kikish-lla-yki} \\
& \text{*kikish-lla-ni-ki} & \text{kikish-ni-lla-yki} & \text{kikish-lla-yki} \\
& \text{armpit-just-\textit{NI}-2.POSS} & \text{armpit-\textit{NI}-2.POSS} & \text{armpit-just-2.POSS} \\
& \text{‘just your armpit’} & \text{‘just my armpit’} & \\
\end{align}

Note also that /ll/ in the suffix signifies a lamino-palatal lateral, which does not cause insertion of \textit{ni} on its own; see (16) from Huallaga Quechua.

\begin{align}
\text{(16) chay-yaq-lla} \\
& \text{that-LIM-just} \\
& \text{‘just to there’}
\end{align}

The intervening suffix \textit{lla} can be in different positions. In Huallaga Quechua, it generally precedes the possessive affix; cf. (17-a). Examples where \textit{lla} follows it are significantly degraded, but not completely ungrammatical; cf. (17-b). If a noun is marked for both plural and possessive, as in (17-c), \textit{lla} appears after both of these exponents. Thus, \textit{lla} precedes a possessive suffix in one case and follows it in another.

\begin{align}
\text{(17) a. } & \text{kiki-lla-:} & \text{b. } & \text{°kiki::-lla} \\
& \text{self-just-1.POSS} & \text{self-1.POSS-just} \\
& \text{‘just myself’} & \\
& \text{c. } & \text{kiki-n-kuna-lla} & \text{rika-chi-ku-sha} \\
& \text{self-2.POSS-PL-just} & \text{see-CAUS-REFL-3PERF} \\
& \text{‘They saw themselves.’} &
\end{align}

Thus, to sum up the evidence from Quechua, again it looks as though a phonological process which is known to normally operate under strict locality (viz., syllable epenthesis breaking up super-heavy rhymes) can in some cases apply non-locally; and again, under an alternative perspective the data can be taken to indicate that an otherwise intervening exponent behaves as if it were not present at the relevant stage of the derivation where \textit{ni}-insertion is decided.

2.4. \textit{Non-Local Ruki Rule Application in Sanskrit}

The next pattern comes from Sanskrit; it has been investigated in Kiparsky (1982), on which the following remarks (and data) are based. In Sanskrit, the so-called \textit{ruki} rule turns \textit{s} into retroflex \textit{š} after high vowels (\textit{u}, \textit{i}), velar consonants (e.g., \textit{k}) and \textit{r}, see (18) and (19).

\begin{align}
\text{(18) a. } & \text{da-dā-san ‘You give.’} \\
& \text{b. bi-bhar-śi ‘You carry.’} \\
\text{(19) a. } & \text{di-dā-san-ti ‘He wants to give.’} \\
& \text{b. ni-ni-śa-ti ‘He wants to lead.’}
\end{align}
The rule also applies if the imperfective prefix *a* intervenes. This is illustrated in (20).

(20) a. siñc- ‘sprinkle’
 b. abhi-siñc- ‘anoint’, ‘pour on’ (compound verb)
 c. abhy-a-siñc-at ‘anointed’, ‘poured on’ (IMPERFECTIVE, 3SG)

The root without a prefix begins with the regular *s*; cf. (20-a). It is turned into a retroflex sound after the prefix *abhi* (‘unto’); cf. (20-b). The retroflex *š* also appears in (20-c), where the high vowel of the prefix and the root are separated by the imperfective exponent *a*.

Another example of seemingly non-local application of the *ruki* rule is given in (21). In (21-a), the first two segments of the root are reduplicated, and a retroflex *š* triggered by the prefix appears in the reduplicant and in the root even though the prefix is not adjacent to the root in the surface form. This, as such, is a regular opaque pattern of reduplication involving (in traditional analyses) a sequence of *ruki* rule application preceding reduplication. However, more interestingly in the present context, if reduplication and the imperfective prefix *a* co-occur, the *ruki* rule still applies to the initial consonant of the root, yielding what looks like a doubly opaque pattern of over-generation (alternatively, non-local application of a phonological process followed by reduplication); see (21-b).

(21) a. abhi-šaňja → abhi-ša-šaňja ‘cursed’
 b. abhy-a-ša-šaňja

2.5. Non-Local Vowel Harmony in Kazakh

As a final example of phonological processes triggered by inflectional exponents which are non-local in surface representations, this section introduces data from non-local vowel harmony in Kazakh. We will consider the pattern of non-local application across the comitative (instrumental) suffix *men* before explaining the regular vowel harmony in further detail. Vowel harmony in Kazakh inflectional morphology usually applies locally. In (22) (from Muhamedova (2015)), the vowel of the interrogative suffix *bA* varies between front and back, depending on the backness of the preceding stem vowel.

(22) a. Germanija-ya bar-duŋ-ba?
 Germanija-ya bar-dlng-bA?
 Germany-DAT go-PAST-2SG-Q
 ‘Have you been to Germany?’
 b. Ajquń yj alup ber-di-me?
 Ajquń yj al-Ip ber-di-bA?
 Aykhin house buy-CONV AUX.PST-3-Q
 ‘Did Aykhin buy the house?’

The instrumental case suffix *men* is an exception, since it is transparent to vowel harmony. Vowel harmony applies across this suffix, but the suffix itself does not undergo vowel harmony; see (23) (from Bowman & Lokshin (2014)). The interrogative suffix again varies, but the instrumental suffix stays invariant. Vowel harmony thus applies non-locally.

(23) a. bul Jal nan-men-ba

8 Muhamedova (2015) notes that for some speakers the interrogative suffix *bA* does not undergo vowel harmony at all; see also McCollum (2018) for a detailed discussion.
Vowel harmony is a regular phonological process and usually affects all suffixes. These suffix vowels assimilate in backness and rounding to a preceding root vowel (cf. Krippes (1996)). The height distinction between high and non-high vowels is kept constant; see the inventory in (24). Back rounded /o/ does not undergo vowel harmony, since it cannot occur in suffixes. Relatedly, the low vowel /a/ never assimilates in rounding. The other low vowel /æ/ mostly occurs in loanwords.

(24) Kazakh vowel phoneme inventory

<table>
<thead>
<tr>
<th></th>
<th>front</th>
<th>back</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unrounded</td>
<td>rounded</td>
</tr>
<tr>
<td>high</td>
<td>i</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>↔ i</td>
<td>↔ u</td>
</tr>
<tr>
<td>mid</td>
<td>e</td>
<td>ø</td>
</tr>
<tr>
<td>low</td>
<td>(æ)</td>
<td>a</td>
</tr>
</tbody>
</table>

Vowel harmony is regular and normally applies to case suffixes. As shown in (25), the genitive case suffix nI and the locative suffix dA undergo harmony; they occur with front vowels /i/ and /e/ after front vowel stems and with back vowels /u/ and /a/ after back vowels.

They also allow vowel harmony to apply to their left and right. Vowel harmony is restricted to the word domain, since, e.g., the postposition boj in (25-e) does not undergo harmony. Vowel harmony is thus a regular and local phonological process in Kazakh.

(25) a. kitab-tAR-m-nI b. ekew-i-nI
 kitab-tAR-m-nI ekew-i-nI
 book-PL-POSS-GEN both-POSS.2SG-GEN
 ‘of his/her books’ ‘of you two’

c. pæter-de-me? d. Qazaqstan-da e. tyni bojú
 pæter-dA-bA? Qazaqstan-dA tyni bojú
 flat-LOC-Q Kazakhstan-LOC night during
 ‘…in a flat?’ ‘…in Kazakhstan’ ‘the whole night’

The process applying to the question suffix after the comitative suffix shows the same alternation that we see in other cases of vowel harmony; compare (25-c) with (22-b). Similarly, this is an argument against a phonological underspecification solution with structure preservation (see van der Hulst (2016)), as /a/ generally has a harmonic counterpart. For now, we can conclude that idiosyncratic transparency poses a challenge for any purely phonological analysis of the data (cf. Mahanta (2012), Bowman & Lokshin (2014)); we will come back to this issue in section 5.

9 The first example is from Bowman & Lokshin (2014), the others are from Muhamedova (2015).
To sum up this section, we have seen five different pieces of evidence showing that a morphological exponent can be involved in a regular, well-behaved and otherwise strictly local phonological process even though it shows up in a non-local position, separated by an intervening inflectional exponent. In what follows, we will pursue what strikes us as the classical hypothesis in grammatical theory to account for paradoxes of this type: The non-local exponent is in fact a local exponent at the point where the phonological operations discussed above take place, but ends up in a non-local position as a consequence of subsequent movement. This presupposes a systematic theory of movement of morphological exponents. As we will show in the next section, the approach to inflectional morphology in terms of harmonic serialism developed in Müller (2018) predicts the existence of exponent movement in an autonomous morphological component of grammar without any further assumptions specifically designed to bring about displacement.

3. Inflectional Morphology in Harmonic Serialism

3.1. Background Assumptions

Harmonic serialism is a derivational version of optimality theory which has been envisaged as an alternative to standard parallel optimality theory from the very beginning (cf. Prince & Smolensky (2004)). In harmonic serialism, the generator (GEN) and harmony evaluation (H-EVAL) components of the grammar are not discreetly ordered, but alternate constantly. Basically, the theory works as shown in (26) (see McCarthy (2008), Heck & Müller (2007b)).

(26) Harmonic serialism:

a. Given some input I_i, the candidate set $CS_i = \{O_{i1}, O_{i2}, \ldots, O_{in}\}$ is generated by applying at most one operation to I_i.

b. The output O_{ij} with the best constraint profile is selected as optimal.

c. O_{ij} forms the input I_{ij} for the next generation step producing a new candidate set $CS_j = \{O_{ij1}, O_{ij2}, \ldots, O_{ijn}\}$.

d. The output O_{ijk} with the best constraint profile is selected as optimal.

e. Candidate set generation stops (i.e., the derivation converges) when the output of an optimization procedure is identical to the input (i.e., when the constraint profile cannot be improved anymore).

Thus, given some input, at most one basic operation can apply, which generates a finite set of output candidates. At this point, optimization selects the optimal output on the basis of a set of ranked and violable constraints. This optimal output is then subject to further application of at most one basic operation, which is immediately followed by further optimization, and so on, until the optimal output is identical to the current input, and convergence is reached. Harmonic serialism has been actively pursued over the last decade both for phonology (see, e.g., McCarthy (2010; 2016), Torres-Tamarit (2016), and Elfnor (2016)) and for syntax (see Heck & Müller (2013; 2016) and Assmann et al. (2015), among others). In contrast, until very recently there had basically been no work in morphology. This situation has changed with Müller (2018), where the outlines of a harmonic serialist approach to inflectional morphology are developed.

A basic assumption is that exponentence in inflectional morphology involves structure-building via Merge (see Alexiadou & Müller (2008) and Bruening (2017) for earlier propos-

10 In syntax, the model is often referred to as ‘extremely local optimization’.

11 See, however, Wunderlich (1997) and Caballero & Inkelas (2013) for serial affixation in Minimalist Morphology and Optimal Construction Grammar, respectively.
als along these lines), rather than substitution transformations applying to terminal nodes (as in Halle & Marantz (1993)), or entire subtrees (see Ackema & Neeleman (2003; 2004) and Caha (2013), among others), or spans (see Merchant (2015), Svenonius (2016), and Ermo-laeva & Kobele (2019)). Such structure-building takes place in a pre-syntactic autonomous morphological component. An exponent realizes morpho-syntactic features associated with a stem by merging with it.

More specifically, morphological exponence is assumed to proceed as follows. Initially, a stem is taken from the lexicon with its inherent features, and enriched by non-inherent features, yielding a fully specified feature matrix. Together, these features provide the context for underspecified inflection markers, comparable to the fully specified paradigm cell in Paradigm Function Morphology (see Stump (2001)), or a fully specified syntactic insertion context in, e.g., Distributed Morphology (see Halle & Marantz (1993)). Next, triggered by high-ranked Merge Conditions (MCs) which demand a discharge of structure-building features \([\star \alpha \star], [\star \beta \star], \text{ etc.}, \text{ on stems, inflectional exponents of type } [\alpha], [\beta], \ldots\) are then successively merged with the stem, thereby eventually generating whole words. All of an inflectional exponent’s features are inherent; but they are often underspecified. The morphological categories \([\alpha], [\beta], \text{ involved here may or may not correspond directly to syntactic categories (i.e., they can be morphomic; Aronoff (1994)); they are determined by morphological arrays, i.e., sets of exponents connected by shared morpho-syntactic features. Morphological arrays are defined in (27).}

(27) Morphological Array_\(X_\):

An exponent \(\alpha\) is in the morphological array for a grammatical category \(X\) (MA_\(X\)) in the domain of a syntactic category \(W\) iff (i), (ii) or (iii) holds:

(i) \(\alpha\) realizes a grammatical category \(X\) in the domain of \(W\) by a morpho-syntactic feature that is a (possibly underspecified) instantiation of \(X\).

(ii) \(\alpha\) realizes a grammatical category \(Y\) in the domain of \(W\) by a morpho-syntactic feature that is a (possibly underspecified) instantiation of \(Y\), and there is an exponent in MA_\(X\) that realizes \(Y\).

(iii) \(\alpha\) is a unique radically underspecified exponent for \(X\) in the domain of \(W\).

In addition to MCs, there are IDENT and MAX constraints deriving the compatibility and specificity requirements for underspecified morphological exponents that have to be stipulated in approaches such as Paradigm Function Morphology (cf. Panini’s Principle) and Distributed Morphology (cf. the Subset Principle). Thereby, standard underspecification-based approaches to syncretism in optimality theory can be implemented in harmonic serialism; see Grimshaw (2001), Trommer (2001), Stiebels (2006), and Wolf (2008), among others). Furthermore, there are alignment (and other) constraints determining the order of exponents, primarily by demanding left-alignment (L_\(\alpha\Rightarrow\)) or right-alignment (\(\alpha\Rightarrow\)) of exponents with certain types of features \(\alpha\) (see Trommer (2001; 2008)). Finally, the fully inflected word is transferred to the syntactic component, which cannot see the internal structure of the word

12 This corresponds to Stump’s (2001) concept of a set of well-formed morpho-syntactic properties. Note that the assumption that it is stems that start morphological structure-building is a simplification. In Müller (2018, ch. 5), it is argued (in line with much recent literature) that in order to account for morpho-syntactically determined stem allomorphy, such a role should be attributed to an abstract categorizing head; the categorizing head is then equipped with the fully specified feature matrix in need of realization, and is merged with a stem that (partially) satisfies it. This complication need not concern us in the present context, though.

13 The underlying assumption is that the same kinds of structure-building features are also active in syntax, where they trigger syntactic Merge operations. See Adger (2003), Kobele (2006), Pesetsky & Torrego (2006), Heck & Müller (2007b), Abels (2012), Georgi (2014), Collins & Stabler (2016), and many more.
generated in the morphological component but can access all the morpho-syntactic features associated with the stem, and carry out Agree operations with them (cf. Chomsky (2001), Bruening (2017)).

A final important general assumption of this harmonic serialist approach to inflectional morphology is that, like structure-building in the syntax, morphological structure-building is subject to the Strict Cycle Condition (see Chomsky (1973; 1995; 2019)), according to which an exponent can only be merged with an (extended) stem at the root; cf. (28).

(28) **Strict Cycle Condition:**
Within the current domain δ, an operation may not target a position that is included within another domain ϵ that is dominated by δ.

Unlike the MCs, the faithfulness constraints (IDENT, MAX), and the alignment constraints, which are part of the H-EVAL component and therefore violable and ranked, the Strict Cycle Condition is part of the GEN component, and thus inviolable – outputs that would violate it cannot be generated in the first place.

As shown in Müller (2018), an approach to inflectional morphology in terms of harmonic serialism offers new perspectives on some core phenomena in inflectional morphology, viz., affix order, extended exponence (see Matthews (1972) and Caballero & Harris (2012)), disjunctive blocking (i.e., compatibility/specificity effects with underspecified exponents), locality of allomorphy, and *ABA patterns (see Bobaljik (2012) on the latter). However, perhaps the most striking property of the harmonic serialist approach to inflectional morphology is that, unlike virtually all established approaches recognizing a separate morphological component of the grammar, it automatically predicts the existence of movement of morphological exponents in words.

3.2. **Movement in Morphology**

Here is one simple scenario (among many others) which will almost invariably give rise to movement. Suppose first that initially there is a stem A with two structure-building features $\{\bullet \alpha \bullet\}, \{\bullet \beta \bullet\}$ that trigger Merge operations with morphological exponents from the morphological arrays identified by $[\alpha]$ and $[\beta]$, via MC$_\alpha$ and MC$_\beta$. Next, for the sake of simplicity, let us further assume that the two items $[\alpha B]$ and $[\beta C]$, respectively, are the (most likely underspecified) exponents in these morphological arrays that best satisfy the faithfulness constraints demanding compatibility and specificity. Third, there are two alignment constraints pulling the exponents in the same direction, e.g., to the right edge: $\alpha \Rightarrow R$, $\beta \Rightarrow R$. Fourth, there is a higher-ranked alignment constraint ensuring that the stem A is left-aligned: L$\Leftarrow A$. And fifth and finally, the MCs for α and β outrank the alignment constraints for α and β. Consider now what happens under this scenario (a) when the ranking among the two MCs is the opposite of the ranking among the respective alignment constraints, and (b) when the ranking among the two MCs is identical to the ranking among the respective alignment constraints, as in (29-a) and (29-b), respectively.

(29) a. $MC(\alpha) \gg MC(\beta) \gg L \Leftarrow A \gg \beta \Rightarrow R \gg \alpha \Rightarrow R$

b. $MC(\alpha) \gg MC(\beta) \gg L \Leftarrow A \gg \alpha \Rightarrow R \gg \beta \Rightarrow R$

Under the ranking in (29-a), $[\alpha B]$ merges with A first, and shows up as a suffix. Then $[\beta C]$ merges with A, also as a suffix. It will have to attach to the extended stem outside, at the root (because of the Strict Cycle Condition). This gives rise to a violation of $\alpha \Rightarrow R$, but there is no way to improve the constraint profile further by additional optimizations, so convergence is reached; see (30-a). However, things are different under the ranking in (29-b). Again, $[\alpha B]$
merges with A first, and it shows up as a suffix. Again, \([\beta \ C]\) merges with A next, also as a suffix. And as before, \([\beta \ C]\) needs to attach at the root, due to the Strict Cycle Condition. Still, in this case the violation of \(\alpha \Rightarrow R\) that this Merge operation creates can be undone by an optimal output in a next optimization step, by morphological movement: \([\alpha \ B]\) moves around \([\beta \ C]\), which trades in the more severe violation of \(\alpha \Rightarrow R\) for a less severe violation of \(\beta \Rightarrow R\); see (30-b).

(30) a. \([A \ [A \ A \ B_\alpha] \ C_\beta] \)

b. \([A \ [A \ A \ C_\beta] \ B_\alpha] \)

Essentially the same conclusions will hold under the reverse settings of the left/right specifications in alignment constraints, as in (31-ab).

(31) a. \(MC(\alpha) \gg MC(\beta) \gg A \Rightarrow R \gg L \leftarrow \beta \gg L \leftarrow \alpha\)

b. \(MC(\alpha) \gg MC(\beta) \gg A \Rightarrow R \gg L \leftarrow \alpha \gg L \leftarrow \beta\)

The scenario in (31-a) will not involve movement of the \(\alpha\)-exponent to the left edge; but the one in (31-b) will bring about such movement; see (32-ab).

(32) a. \([A \ C_\beta \ [A \ B_\alpha] \ A]\)
b. \([A \ B_\alpha \ [A \ C_\beta \ [A \ A]]\]

To see this in more detail, let us look at the sequence of optimization procedures involved here. Let us also replace the abstract discussion based on variables like A, B, C, \(\alpha\), \(\beta\) with real examples, focussing on (simplified versions of) German verb inflection first (this will instantiate a non-movement pattern, as in (29-a)), and Berber verb inflection afterwards (this will illustrate a movement pattern, as in (31-b)).14

Thus, suppose that \(A = \) a German V stem like \(kauf\) (‘buy’) that is equipped with morphological structure-building features \([\bullet T\bullet] (= [\bullet \alpha \bullet])\) and \([\bullet Agr\bullet] (= [\bullet \beta \bullet])\) identifying tense and subject agreement exponents, respectively. Two relevant exponents for, say, \(PAST.2.SG\) environments are \([T \ te]\) and \([Agr \ st]\), and the eventual output that needs to be derived is \(kauf-te-st\) (‘buy-PAST.2.SG.’, ‘You bought.’). The initial optimization step is shown in (33).15

(33) German verb inflection (harmonic serialism, step 1):

<table>
<thead>
<tr>
<th>Rule</th>
<th>Features</th>
<th>MC_T</th>
<th>MC_Agr</th>
<th>L \leftarrow V</th>
<th>Agr \Rightarrow R</th>
<th>T \Rightarrow R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>[V Kauf]; [\bullet T\bullet]; [\bullet Agr\bullet], [2], [SG], [PAST], [{T \ te}/[PAST]], \ldots, {[Agr \ st]}/[2.SG], \ldots</td>
<td>MC_T</td>
<td>MC_Agr</td>
<td>L \leftarrow V</td>
<td>Agr \Rightarrow R</td>
<td>T \Rightarrow R</td>
</tr>
<tr>
<td>11:</td>
<td>[V Kauf]; [\bullet T\bullet]; [\bullet Agr\bullet]</td>
<td>#!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:</td>
<td>[V Kauf-te]; [\bullet Agr\bullet]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:</td>
<td>[V Kauf-st]; [\bullet T\bullet]</td>
<td>#!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:</td>
<td>[V Te-Kauf]; [\bullet Agr\bullet]</td>
<td>*</td>
<td>#!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:</td>
<td>[V St-Kauf]; [\bullet T\bullet]</td>
<td>#!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

14 We hasten to add that the two examples we discuss primarily serve the purpose of highlighting the basic mechanics of the theory and its predictions for morphological movement, and are not meant as comprehensive analyses. Eventually, issues are more complex than we make out here.

15 Some notational conventions: I_1 is the initial input; here, the V stem and its structure-building features. The second line in the top-left box list the fully specified feature matrix associated with this stem that is in need of morphological realization (and that subsequently can be accessed in the syntax). The third line in this box illustrates the morphological arrays that will be used; for each of the two morphological arrays, only one morphological exponent is given here (viz., the one that will be selected by the faithfulness constraints from which this optimization abstracts away.) The morphological exponents pair \((\bullet \leftrightarrow \bullet)\) a phonological form \(\text{St} / \text{St}\) with a (often underspecified) set of morpho-syntactic features \([\bullet \bullet\bullet]\), as in Distributed Morphology. Finally, immediate output descendents of a given input extend the input’s last digit.
Since all competing outputs O_{11}–O_{14} can be separated from the input I_1 by at most one operation, the candidate set is necessarily finite. Output O_{11} leaves the input intact and is filtered out because of violations of MC_T and MC_{Agr}. O_{12} discharges V’s $[\bullet T\bullet]$ feature by merging /te/ as a suffix; this satisfies all constraints, except for MC_{Agr}. However, if MC_{Agr} is satisfied by discharging $[\bullet Agr\bullet]$ on V and merging /st/, as in O_{13}, the higher-ranked MC_T is fatally violated. Note that the confinement to at most one operation between input and output ensures that no candidate can be generated in the first step that satisfies both MCs simultaneously, by merging both exponents. Next, O_{14} is excluded because it fatally violates both the alignment constraint for the stem ($L \Leftarrow V$) and the alignment constraint for the inflectional exponent ($T \Rightarrow R$), by realizing the tense exponent as a prefix. Finally, O_{15}’s constraint profile is hopeless. It fatally violates MC_T, like O_{13}; in addition, like O_{14}, it has gratuitous alignment violations (of $L \Leftarrow V$ and $Agr\Rightarrow R$).

In the next optimization step, the optimal output O_{12} of (33) is used as the input; see (34).^{17}

\begin{center}
(34) \textit{German verb inflection} (harmonic serialism, step 2):
\end{center}

| O_{121}: [V kauf-te]: [• Agr•], [2], [SG], [PAST], [...] | MC_T | MC_{Agr} | $L \Leftarrow V$ | Agr$\Rightarrow R$ | $T \Rightarrow R$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{121}: [V kauf-te]: [• Agr•]</td>
<td>#!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eO_{122}: [V [V kauf-te]-st]</td>
<td></td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>eO_{123}: [V st-[V kauf-te]]</td>
<td></td>
<td></td>
<td>#!</td>
<td>**</td>
</tr>
</tbody>
</table>

As before, the first competing output O_{121} leaves the input intact. It is filtered out because of the MC_{Agr} violation that was tolerable in the previous optimization step but has become fatal now. In contrast, O_{122} discharges the $[\bullet Agr\bullet]$ feature by merging /st/ as a suffix; this candidate is optimal. This illustrates a typical property of harmonic serialism: There is a continuous, gradual improvement of the constraint profile. Still, O_{122} does not respect all constraints: By satisfying high-ranked MC_{Agr}, it invariably introduces a new violation of lower-ranked MC_T: Now /te/ is separated from the right edge of the word by an intervening exponent (viz., /st/). This problem could in principle be solved by merging /st/ as a prefix, as in O_{123}; but this fatally violates the two higher-ranked alignment constraints.^{18} Note that an output that would merge /st/ exponent counter-cyclically, between the V stem and /te/, and which would (fatally) violate Agr$\Rightarrow R$ but not $L \Leftarrow V$, cannot be generated, given the Strict Cycle Condition.

In the third and final optimization step, convergence is reached; see (35).

^{16} This presupposes that morphological arrays are also finite. This is the case. Choice from a given morphological array is governed by IDENT and MAX constraints, which accounts for syncretism via underspecified exponents. Although underspecification is ultimately highly relevant for most of the morphological systems addressed here, we will abstract away from this issue throughout this article since it is orthogonal to our main concerns.

^{17} It is postulated in Müller (2018) that once an exponent has been taken from a morphological array, it is gone permanently. This assumption is adopted here even though it is not actually important for our present concerns.

^{18} We assume a gradient interpretation of alignment constraints: O_{123} violates Agr$\Rightarrow R$ twice because /st/ is separated from the right edge by two intervening items.
(35) **German verb inflection** (harmonic serialism, step 3):

<table>
<thead>
<tr>
<th>I12: [v [v Kauf-te]-st] [2], [SG], [PAST], { ... }, { ... }</th>
<th>MC_T</th>
<th>MC_Agr</th>
<th>L⇐V</th>
<th>Agr⇒R</th>
<th>T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>*O_{1221}: [v [v Kauf-te]-st]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{1222}: [v-st-[v Kauf-te]]</td>
<td>*!</td>
<td>*!</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{1223}: [v-te-[v [v Kauf-st]-te]]</td>
<td>*!</td>
<td>*!</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{1224}: [v [v [v Kauf-st]-te]]</td>
<td>*!</td>
<td>*!</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

O_{1221} does not change the input, and thus maintains the previous optimal candidate’s T⇒R violation, but at this point there is no way to improve the constraint profile further by carrying out some operation. In particular, if /st/ shows up in front of the V stem, as in O_{1222}, two higher-ranked alignment constraints are violated, as with O_{1223} in (34); and similar consequences result if /te/ were to be merged in either a prefix or suffix position, as in O_{1223} and O_{1224}. However, it is worth noting at this point already that O_{1222}–O_{1224} are outputs that carry out morphological movement: E.g., in O_{1222}, /st/ is moved to the left edge from the right-peripheral position it shows up in in I_{122}.

Let us next look at a scenario that involves movement because the two MCs for features α and β show up in the same order as the two (unidirectional) alignment constraints for α and β, as in (31-b), where left-alignment constraints bring about a prefix status of inflectional exponents. Consider, e.g., an inflected Berber verb like ad-y-seg (‘FUT-3.MASC.SG-buy’; ‘He will buy.’); cf. Ouhalla (1991). Suppose that the order of MC_T and MC_Agr is the same as in German; in fact, let us generalize this assumption and propose that the order of these two MCs is cross-linguistically invariant, and follows from an independently motivated functional sequence (f-seq; see Starke (2001)) of inflectional categories that also predicts a uniform order of functional projections in the syntax. This proposal then derives Mirror Principle effects (see Baker (1985)), albeit at an abstract level: Basic structure-building takes place in the same way, determined by f-seq, in morphology and syntax; but the Mirror Principle does not have to be surface-true because, as will be shown momentarily, morphological movement can apply after initial structure-building.

Returning to the constraints that play a role, in addition to the two MCs, there are two alignment constraints L⇐T, L⇐Agr, and a higher-ranked constraint V⇒R ensuring prefix status of the inflectional exponents.

The first optimization step is shown in (36).

(36) **Berber verb inflection** (harmonic serialism, step 1):

<table>
<thead>
<tr>
<th>I1: [v seg]: [●•], [●Agr●], [3], [SG], [MASC], [FUT], {[T/ad-]+[FUT], ... }, {[Agr/y+][3.SG,MASC], ... }</th>
<th>MC_T</th>
<th>MC_Agr</th>
<th>V⇒R</th>
<th>L⇐T</th>
<th>L⇐Agr</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{11}: [v seg]: [●•], [●Agr●]</td>
<td>*!</td>
<td>*!</td>
<td>*!</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>O_{12}: [v seg-y]: [●Agr●]</td>
<td>*!</td>
<td>*!</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{13}: [v seg-ad]: [●•]</td>
<td>*!</td>
<td>*!</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{14}: [v y-seg]: [●Agr●]</td>
<td>*!</td>
<td>*!</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*O_{15}: [v ad-seg]: [●•]</td>
<td>*!</td>
<td>*!</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19 See Müller (2018, ch. 2) for slightly more intricate cases, based on Trommer (2008), where an initial suffix can in fact legitimately become a prefix in the course of repeated optimization.

20 Inflected verb forms instantiating the suffixal pattern in (29-b) for tense and subject agreement marking are not unattested, but somewhat rarer in the world’s languages; see Julien (2002), Trommer (2001).

21 We will address the question later of how morphomic features enter the picture.

22 This is a huge simplification since several agreement exponents are actually realized as suffixes in Berber; see Noyer (1992) and Frampton (2002). A comprehensive analysis of the paradigm would have to address this by exploiting the basic violability of V⇒R for the optimal realization of certain φ-feature combinations. For present purposes, we will abstract away from these complications.
In (36), the inert output O_{11} that leaves the input intact violates both MCs; and the outputs O_{12} and O_{14} that merge the agreement exponent first fatally violate higher-ranked MC$_T$. The optimal output O_{15} merges the tense exponent /ad/ as a prefix, rather than as a suffix, as in O_{13}.

In the following step, based on O_{15} as the new input, the optimal output merges the agreement exponent /y/ as a prefix; see (37). Here, O_{153} emerges as optimal even though it introduces a violation of L\RightarrowT (since /ad/ is now not at the left edge anymore); however, if /y/ is merged as a suffix, as in O_{152}, this will give rise not only to (tolerable) violations of lower-ranked L\RightarrowAgr, but also to a fatal violation of higher-ranked V\RightarrowR. An output that would squeeze in /y/ between /ad/ and the V stem /seg/ would yield the best constraint profile (violating only L\RightarrowAgr) but cannot be generated, as a consequence of the Strict Cycle Condition.

(37) *Berber verb inflection* (harmonic serialism, step 2):

<table>
<thead>
<tr>
<th>O_{151}: [v ad-seg]: [***]</th>
<th>MC$_T$</th>
<th>MC$_{Agr}$</th>
<th>V\RightarrowR</th>
<th>L\RightarrowT</th>
<th>L\RightarrowAgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{152}: [v [v ad-seg]-y]</td>
<td>*!</td>
<td>*!</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>O_{153}: [v y-[v ad-seg]]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this scenario, the constraint profile can and must be further improved by moving the tense exponent /ad/ to the front in the next optimization step; see (38).

(38) *Berber verb inflection* (harmonic serialism, step 3):

<table>
<thead>
<tr>
<th>O_{1531}: [v y-[v ad-seg]]</th>
<th>MC$_T$</th>
<th>MC$_{Agr}$</th>
<th>V\RightarrowR</th>
<th>L\RightarrowT</th>
<th>L\RightarrowAgr</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{1532}: [v ad-[v y-[v seg]]]</td>
<td>*!</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{1533}: [v [v ad-seg]-y]</td>
<td>*!</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_{1534}: [v [v y-[v seg]]-ad]</td>
<td>*!</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here, O_{1532} trades in the input’s L\RightarrowT violation for a less severe L\RightarrowAgr violation, and is therefore optimal. Other outputs carrying out rightward movement also compete but are filtered out as suboptimal because they incur fatal V\RightarrowR violations: O_{1533}, O_{1534}. It is clear that any further movement operation will deteriorate the constraint profile; hence, convergence is reached in the next step.

To sum up: In the harmonic serialist approach to inflectional morphology outlined in this section, movement of exponents is a natural characteristic that arises under various scenarios, one of them consisting of two MCs and two alignment constraints for two features showing up in the same order (this is the scenario that will also be relevant for the account of phonological operations triggered by apparently non-local exponents described in section 2). Two properties of the approach are worth emphasizing in this context. First, the present approach does not rely on any special assumptions, of whatever type, to bring about movement of exponents: The constraints that trigger such movement are independently motivated, by considerations completely unrelated to movement. Something comparable does not hold for other theories of morphology that envisage displacement operations or various kinds (e.g., Distributed Morphology); here these operations must be stipulated on a case-by-case basis.
(we will come back to this issue in section 5). And second, the result that morphological movement comes for free is inherently tied to harmonic serialism, and cannot be attained in a standard parallel optimality-theoretic approach. What is crucial here is the restriction that outputs differ from inputs by applying maximally one operation; for this reason, operations may be locally (i.e., at an intermediate stage of the derivation) optimal that can never be optimal from a global perspective. Accordingly, in an optimality-theoretic analysis where the restriction is not in place, a representation like O_{153} in (37), where the agreement exponent is outside of the tense exponent (/y/-/ad/-/seg/), will ceteris paribus never emerge; as illustrated in (39), the surface order will be determined directly, without movement.

(39) **Berber verb inflection** (standard parallel optimality theory):

O_{11}: $[v \text{ seg}]: [\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet]$	MC_T	MC_{Agr}	$V \Rightarrow R$	$L \Leftarrow T$	$L \Leftarrow Agr$
O_{12}: $[v \text{ seg-y}]: [\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet]$	$*$	$*$	$*$		
O_{13}: $[v \text{ seg-ad}]: [\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet]$	$*$	$*$	$*$		
O_{14}: $[v y \text{-seg}]: [\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet]$	$*$	$*$	$*$		
O_{15}: $[v \text{ ad-seg}]: [\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet]$	$*$	$*$	$*$		
O_{16}: $[v y \text{-seg}]$	$*$	$*$	$*$		
O_{17}: $[v y \text{-ad-seg}]$	$*$	$*$	$*$		
O_{18}: $[v y \text{-seg-ad}]$	$*$	$*$	$*$		
O_{19}: $[v y \text{-ad-seg-y}]$	$*$	$*$	$*$		
O_{20}: $[v y \text{ seg-ad-y}]$	$*$	$*$	$*$		
O_{21}: $[v y \text{ seg-y-ad}]$	$*$	$*$	$*$		

Thus, the correct surface order of exponents can be generated under the same constraints, and under an identical ranking, in the harmonic serialist and the standard optimality-theoretic approaches. However, there are conceptual and empirical considerations distinguishing the two alternatives. A possible conceptual argument has been given above: The harmonic serialist approach makes it possible to maintain some version of the Mirror Principle. As for empirical arguments, three pieces of evidence for movement of exponents in the morphological component, hence (in the present context), for harmonic serialism, are presented in Müller (2018).

First, the phenomenon of *discontinuous exponent* (see Harris (1945)), including circumfixation, can be accounted for by assuming that the “discontinuous” exponent is actually a discrete item initially, part of which gets separated by morphological movement.

Second, the phenomenon of *partially superfluous extended exponent*, where the morpho-syntactic features of two exponents in a single word stand in a proper subset relation, poses a problem for many theories of morphology because the more general (i.e., subset) exponent would seem to be globally unmotivated. Many solutions to this problem predict that the more general exponent has to be closer to the initial stem than the more specific exponent (see Caballero & Harris (2012), Stiebels (2015), and Müller (2018)). However, in some cases (e.g., with extended exponent of negation on the verb in Swahili; cf. Stump (2001)) the surface order is at variance with this requirement. Morphological movement in harmonic serialism solves this problem: The more general exponent is merged closer to the stem first, the more specific exponent is merged later, and finally the former exponent moves across the latter.

Third, the phenomenon of *non-local stem allomorphy* (i.e., stem allomorphy conditioned by features on exponents that are not next to the stem on the surface) has motivated a number of special devices in the literature (see Merchant (2015), Moskal & Smith (2016), and Božič
(2019)) but can be reinterpreted in the present approach as extremely local stem allomorphy accompanied by subsequent exponent movement.

Against this background, it should be clear that the cases of seemingly non-local phonological operations in words discussed in section 2 qualify as a further argument for movement in morphology.

4. Phonological Evidence for Movement in Morphology

4.1. Cycles

The hypothesis we want to pursue in what follows is that what may at first sight look like a non-local application of a phonological operation can upon closer inspection be shown to be a strictly local phonological operation conditioned by an exponent that eventually shows up in a non-local position as a consequence of morphological movement. At this point, the necessary assumptions to implement this for the five case studies are already in place, except for one: It needs to be determined when phonological operations can take place in harmonic serialist derivations.

We would like to suggest that phonological operations apply to the output of a morphological cycle, and that there are two morphological cycles in the present approach to inflectional morphology in terms of harmonic serialism: The first morphological cycle is finished when all MC-triggered Merge operations have applied, and the morphological arrays are exhausted. Intuitively, this is the stage where the word is potentially complete for the first time. The second morphological cycle is finished when the derivation has converged on a final output. In the above example illustrating German verb inflection, the two morphological cycles converge on O_{122} in (34). However, in the example illustrating Berber verb inflection, the two morphological cycles are not identical: O_{153} in (37) completes a first morphological cycle, and O_{1532} in (38) ends a second one. This opens up the possibility that phonological operations may apply after the first cycle already, before morphological movement takes place; and as we will show in the next section, this is what underlies the effects discussed in section 2.

4.2. De-Spirantization in Barwar Aramaic

Consider first seemingly non-local de-spirantization in Barwar Aramaic. Recall from (2) and (7) that the tense/aspect exponent /wa/↔[REMOTE] can intervene between the stem and an agreement exponent like /le/↔[3.SG.MASC] on the surface but does not block de-spirantization of the final stem consonant triggered by /le/. Given the reasoning in section 3, this implies that /le/ is merged before /wa/ (and the right-alignment constraint for /le/ outranks that for /wa/). At first sight, this might seem to necessitate deviating from the assump-

23 This will be minimally modified in the following section in view of morphomic exponents.

24 The characterization of the first morphological cycle as a “potentially complete” word where all structure-building features have been discharged bears an obvious resemblance to Chomsky’s (2000) characterization of phases (especially the subcase of “a verb phrase in which all θ-roles are assigned”); an analogous reasoning could be provided for the second morphological cycle (“full clause”). Following much recent literature (e.g., Marvin (2002), Embick (2010)), one could in principle therefore refer to the endpoints of the two morphological cycles as “phases” – but it should be kept in mind that in the present approach, morphological and syntactic phases would be distinct kinds of objects.

An alternative way of looking at the two morphological cycles would be to assimilate them to D-structure and S-structure in classic government and binding theory (see Chomsky (1981)): The first cycle (“D-structure”) is defined by basic structure-building; the second cycle (“S-structure”) is defined by the application of all movement operations.

25 Note that this view is in principle fully compatible with the existence of prior stem, and also root, cycles in a stratal approach; see Kiparsky (1982), Bermúdez-Otero (2008), and Trommer (2011).
tion that the order of MCs in the morphological component reflects f-seq. However, closer scrutiny reveals that this is not the case. Although /wa/ has been classified as a “tense/aspect” exponent above, its actual function in the system is not the basic realization of this grammatical category. Rather, the real tense exponent in Barwar Aramaic is the root itself, in the form of non-concatenative root-and-pattern morphology typical of Semitic languages. The exponent /wa/ has a more adverb-like role; it freely attaches to present or past tense stems to add information of anteriority, or remoteness. Historically, it derives from a separate past tense verb *hwa (cf. Khan (2008, 177)). We take this to be a clear indication that /wa/ lies outside the morphological array for /wa/ is assumed to be a non-singleton set; as observed by Khan (2008), there are a few other exponents with similar types of functions.

3. (cf. Khan (2008, 177)). We take this to be a clear indication that /wa/ lies outside the morphological array for /wa/ is assumed to be a non-singleton set; as observed by Khan (2008), there are a few other exponents with similar types of functions.

26 We assume here that the V stem is optionally enriched with a structure-building feature for the remoteness exponent /wa/, as is standard in approaches where all structure-building must be feature-driven. Note also that the morphological array for /wa/ is assumed to be a non-singleton set; as observed by Khan (2008), there are a few other exponents with similar types of functions.

(40) De-spirantization in Barwar Aramaic (harmonic serialism, step 1):

<table>
<thead>
<tr>
<th>Input</th>
<th>MC_{Agr}</th>
<th>MC_{Adv:T}</th>
<th>L←V</th>
<th>Agr⇒R</th>
<th>Adv:T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O121: [v v (栓i)δ] [•Agr•] [•Adv:T•]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O122: [v v (栓i)δ] [•Agr•] [•Adv:T•]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O123: [v v (栓i)δ] [•Agr•] [•Adv:T•]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O124: [v v (栓i)δ] [•Agr•] [•Adv:T•]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the next optimization step documented in (41), O122 is optimal: /wa/ is added, and it is also added as a suffix (because of the ranking L←V ‡ Agr⇒R). As before, placing /wa/ in a position between V and /le/ would in principle give rise to the best constraint profile, but this option is not available because of the Strict Cycle Condition.

(41) De-spirantization in Barwar Aramaic (harmonic serialism, step 2):

<table>
<thead>
<tr>
<th>Input</th>
<th>MC_{Agr}</th>
<th>MC_{Adv:T}</th>
<th>L←V</th>
<th>Agr⇒R</th>
<th>Adv:T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O121: [v v (栓i)δ] [•Agr•] [•Adv:T•]</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O122: [v v (栓i)δ] [•Agr•] [•Adv:T•]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O123: [v v (栓i)δ] [•Agr•] [•Adv:T•]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O124: [v v (栓i)δ] [•Agr•] [•Adv:T•]</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At this point, the V stem has discharged all its structure-building features, so a morphological cycle is completed, and phonological operations can be triggered. Thus, de-spirantization applies to O122, under strictly local conditions, turning /栓iδ-le-wa/ into /栓iδ-le-wa/. After this, the next morphological cycle starts; and, as shown in (42), the constraint profile of the form can indeed be further improved by carrying out morphological movement of /le/ to the right edge: O122 trades in the violation of higher-ranked Agr⇒R incurred by O1221, which leaves the input intact, for a violation of lower-ranked Adv:T⇒R.

26 We assume here that the V stem is optionally enriched with a structure-building feature for the remoteness exponent /wa/, as is standard in approaches where all structure-building must be feature-driven. Note also that the morphological array for /wa/ is assumed to be a non-singleton set; as observed by Khan (2008), there are a few other exponents with similar types of functions.
De-spirantization in Barwar Aramaic (harmonic serialism, step 3):

\[
\begin{array}{|c|c|c|c|}
\hline
\text{MC\textsubscript{Adv:T}} & \text{MC\textsubscript{Adv}} & \text{L} & \text{Agr} \Rightarrow \text{R} \\
\hline
O_{1221}: [v [v [v \text{rr(i)j}] \text{le}] \text{wa}] & \text{MC}\textsubscript{Adv} & \text{L} \leq \text{V} & \text{Agr} \Rightarrow \text{R} \Rightarrow \text{R} \\
\hline
O_{1222}: [v [v [v \text{rr(i)j}] \text{wa}] \text{le}] & \text{MC}\textsubscript{Adv:T} & \text{L} \leq \text{V} & \text{Agr} \Rightarrow \text{R} \Rightarrow \text{R} \\
\hline
O_{1223}: [v \text{wa} [v [v \text{rr(i)j}] \text{le}] & \text{MC}\textsubscript{Adv:T} & \text{L} \leq \text{V} & \text{Agr} \Rightarrow \text{R} \Rightarrow \text{R} \\
\hline
O_{1224}: [v \text{le} [v [v \text{rr(i)j}] \text{wa}] & \text{MC}\textsubscript{Adv:T} & \text{L} \leq \text{V} & \text{Agr} \Rightarrow \text{R} \Rightarrow \text{R} \\
\hline
\end{array}
\]

The next step yields convergence, and a second phonological cycle can start which, however, does not affect de-spirantization anymore: Morphological movement counter-bleeds de-spirantization.

An immediate prediction of this approach is that exponents which are introduced earlier than the subject agreement marker /le/ in this configuration according to f-seq should ceteris paribus not give rise to de-spirantization. This is indeed the case. For instance, as shown in (6) above, an object agreement exponent intervening between the stem and a subject agreement exponent, as in /\text{rr(i)j} \text{delta-le} ('chase.away \langle \text{PAST} \rangle - \text{F.OBJ-3SG.M.SBJ}') blocks de-spirantization. Finally, a remark is due to the optionality of the process; recall from (7) that [t\text{rridwale}] and [t\text{riowale}] co-exist. At least for present purposes, it may suffice to assume that de-spirantization applies without qualification after the second morphological cycle but may or may not apply after the first one (this could, e.g., be modelled by postulating a tie of constraints forcing and counter-acting de-spirantization in one phonological stratum which is resolved into a fixed order in the second one).

4.3. Saussurean Accent Shift in Lithuanian

The problem posed by theme vowels in Lithuanian is that they do not seem to block Saussurean accent shift (such that main stressed is placed on the inflectional exponent pre-specified for accent) even though they do seem intervene on the surface, are associated with a mora themselves, and should thus block this phonological operation; thus, /\text{kas} + [ee \rightarrow \text{j}a] + /\text{ju}/ ('dig-1.SG.PAST') becomes kas\text{j}a\text{u} (see (11)). In what follows, we will show that this phenomenon lends itself to essentially the same kind of analysis as de-spirantization in Barwar Aramaic, with one minor qualification concerning the definition of the end of the first morphological cycle.

To begin with, we follow Kushnir (2018) in assuming that (abstracting away from preverbs) the finite Lithuanian verb consists of a stem followed by three inflectional exponents: first, a tense exponent, which is Ø in present and past contexts and realized as /s/ in future contexts; second, a theme vowel; and third, a subject agreement exponent encoding person and number: V-T-Th-Agr. Since the language does not have overt tense exponents for present and past environments, the difference has to be encoded in some other way. This is accomplished by (a) stem alternations, and (b) theme vowel choice – as for the latter, see, e.g., /\text{dirb-0-a-u}/ (‘work-1.SG.PRES’) vs. /\text{dirb-0-o-o-u}/ (‘work-1.SG.PST’). However, there is no direct implicational relation between tenses and theme vowels: On the one hand, a given tense can co-occur with various theme vowels (e.g., present tense can co-occur with /a/, /ia/, /i/, and /oo/, depending on the V stem); and on the other hand, a given theme vowel can co-occur with more than one tense (so, /oo/ shows up in the present tense with some verbs, and in the past tense with many other verbs; /i/ occurs in the present tense with some verbs, and in the future tense with all verbs). In view of this state of affairs, we conclude that the theme vowels in Lithuanian are best analyzed as a morphomic category [Th] that plays no role in syntax, and is only indirectly related to morpho-syntactic (i.e., non-morphomic) features. In sum, this yields three morphological arrays for the Lithuanian verb, which are accordingly
targetted by three structure-building features on the V stem: [{\textbullet T\textbullet}, {\textbullet Agr\textbullet}, and {\textbullet Th\textbullet}].\(^{27}\) Given f-seq, we expect MC\(_T\) to outrank MC\(_{Agr}\); crucially, MC\(_{Th}\), being concerned with a morphomic feature, will be lowest-ranked, in the same way that non-f-seq-related MC\(_{Adv:T}\) was argued to be in the previous section. This implies that theme vowels are merged last. The ranking of the respective alignment constraints that produces movement of the agreement exponent across the theme vowel, so that the latter ends up in its surface position between the T exponent and the Agr exponent, then is Agr⇒R ⇒ Th⇒R ⇒ T⇒R.

Based on these assumptions, the first optimization step in the derivation of a form like kav\(\acute{\text{u}}\)i (‘dig-1.SG.PAST’) yields a winning candidate where the T exponent (Ø) has been merged as a suffix; cf. O\(_{12}\) in (43).\(^{28}\)

(43) **Saussurean accent shift in Lithuanian** (harmonic serialism, step 1):

<table>
<thead>
<tr>
<th>I(_1): k(\acute{\text{a}})s: {\textbullet T\textbullet}, {\textbullet Agr\textbullet}, {\textbullet th\textbullet}, \[1], [sg], [past], {[t(\acute{\text{u}})/\text{st}/[past]}, ..., }, {[aagr]/\text{st}/[1.sg]}, ..., }, {[[th\text{st}/[k(\acute{\text{a}})s:past]}, ..., }</th>
<th>MC(_T)</th>
<th>MC(_{Agr})</th>
<th>MC(_{Th})</th>
<th>Agr⇒R</th>
<th>Th⇒R</th>
<th>T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_{11}): k(\acute{\text{a}})s: {\textbullet T\textbullet}, {\textbullet Agr\textbullet}, {\textbullet th\textbullet}</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_{12}): k(\acute{\text{a}})s-(\acute{\text{o}}): {\textbullet Agr\textbullet}, {\textbullet th\textbullet}</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_{13}): k(\acute{\text{a}})s-(\acute{\text{u}}): {\textbullet T\textbullet}, {\textbullet th\textbullet}</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_{14}): k(\acute{\text{a}})s-ee: {\textbullet T\textbullet}, {\textbullet Agr\textbullet}</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the next step, the Agr exponent /\text{st}/ is merged; see (44).

(44) **Saussurean accent shift in Lithuanian** (harmonic serialism, step 2):

<table>
<thead>
<tr>
<th>I(_2): k(\acute{\text{a}})s-(\acute{\text{o}}): {\textbullet Agr\textbullet}, {\textbullet th\textbullet}, \[1], [sg], [past], {[\text{st}/[past]}, ..., }, {[aagr]/[1.sg]}, ..., }, {[[th\text{st}/[k(\acute{\text{a}})s:past]}, ..., }</th>
<th>MC(_T)</th>
<th>MC(_{Agr})</th>
<th>MC(_{Th})</th>
<th>Agr⇒R</th>
<th>Th⇒R</th>
<th>T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_{121}): k(\acute{\text{a}})s-(\acute{\text{o}}): {\textbullet Agr\textbullet}, {\textbullet th\textbullet}</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_{122}): k(\acute{\text{a}})s-(\acute{\text{o}})-(\acute{\text{u}}): {\textbullet th\textbullet}</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_{123}): k(\acute{\text{a}})s-(\acute{\text{o}})-ee: {\textbullet Agr\textbullet}</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Importantly, it has to be at this point, before merging the theme vowel in the next step, that the first morphological cycle is concluded, and phonological operations can be triggered: As soon as the theme vowel is part of the representation, the context for Saussurean accent shift is not given anymore, unless additional assumptions are made; recall the example in (9-c) above where a mora following the stressed mora in the dative plural exponent /o\(\text{ms}/ yields a winning candidate where the T exponent (Ø) has been merged as a suffix; cf. O\(_{12}\) in (43).\(^{28}\)

(43) **Saussurean accent shift in Lithuanian** (harmonic serialism, step 1):

<table>
<thead>
<tr>
<th>I(_1): k(\acute{\text{a}})s: {\textbullet T\textbullet}, {\textbullet Agr\textbullet}, {\textbullet th\textbullet}, \[1], [sg], [past], {[t(\acute{\text{u}})/\text{st}/[past]}, ..., }, {[aagr]/[1.sg]}, ..., }, {[[th\text{st}/[k(\acute{\text{a}})s:past]}, ..., }</th>
<th>MC(_T)</th>
<th>MC(_{Agr})</th>
<th>MC(_{Th})</th>
<th>Agr⇒R</th>
<th>Th⇒R</th>
<th>T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_{11}): k(\acute{\text{a}})s: {\textbullet T\textbullet}, {\textbullet Agr\textbullet}, {\textbullet th\textbullet}</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_{12}): k(\acute{\text{a}})s-(\acute{\text{o}}): {\textbullet Agr\textbullet}, {\textbullet th\textbullet}</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_{13}): k(\acute{\text{a}})s-(\acute{\text{u}}): {\textbullet T\textbullet}, {\textbullet th\textbullet}</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_{14}): k(\acute{\text{a}})s-ee: {\textbullet T\textbullet}, {\textbullet Agr\textbullet}</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Importantly, it has to be at this point, before merging the theme vowel in the next step, that the first morphological cycle is concluded, and phonological operations can be triggered: As soon as the theme vowel is part of the representation, the context for Saussurean accent shift is not given anymore, unless additional assumptions are made; recall the example in (9-c) above where a mora following the stressed mora in the dative plural exponent /o\(\text{ms}/ blocks the process. Hence, the definition of completion of the first morphological cycle can be slightly changed: It is not captured by the the point where all MC-triggered Merge operations have applied, but rather by the point where all MC-triggered Merge operations involving morpho-syntactic (i.e., not morphomic) features have taken place. This maintains the original hypothesis that it is the first presence of a morpho-syntactically complete word that defines the option to start phonological operations; morphemic exponents like theme vowels are irrelevant from this perspective.\(^{29}\) Given this assumption, Saussurean shift applies

\(^{27}\) Note that this may or may not require a minimal modification of the concept of morphological array in (27), to ensure that theme vowels do not enter a morphological array together with T exponents. The issue here is whether or not the theme vowel can be said to realize a tense feature if it is partially related to a tense environment.

\(^{28}\) To simplify exposition, we will disregard all outputs that merge a T, Agr, or Th exponent in prefix position, or that carry out movement to prefix position. As argued before, this is never an option for exponents in the presence of a high-ranked constraint L⇐V.

\(^{29}\) Also see work like ?, where theme vowels are inserted post-syntactically in a Distributed Morphology app-
to O₁₂₂ in (44); this fixes the main stress of the word, which cannot subsequently be undone. In the next step, the theme vowel is merged; cf. (45).

(45) **Saussurean accent shift in Lithuanian** (harmonic serialism, step 3):

<table>
<thead>
<tr>
<th></th>
<th>I₁₂₂: kas-Ø-ú: [●Th●], [1], [SG], [PAST], { ... }, { ... }, { ... }, {Th, /ee/⇒[kad:pAST] }, ...</th>
<th>MCₜ</th>
<th>MCₜₜ</th>
<th>AGR⇒R</th>
<th>Th⇒R</th>
<th>T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁₂₂₁: kas-Ø-ú: [●Th●]</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>O₁₂₂₂: kas-Ø-ú-ee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Since Agr⇒R outranks Th⇒R, morphological movement of /ú/ to the right edge takes place in the next optimization round: The violation of Agr⇒R that was tolerable in the previous optimization because there was no better alternative becomes fatal as soon as there is one; see (46).

(46) **Saussurean accent shift in Lithuanian** (harmonic serialism, step 4):

<table>
<thead>
<tr>
<th></th>
<th>I₁₂₂₂: kas-Ø-ú-ee, [1], [SG], [PAST], { ... }, { ... }, { ... }</th>
<th>MCₜ</th>
<th>MCₜₜ</th>
<th>AGR⇒R</th>
<th>Th⇒R</th>
<th>T⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁₂₂₂₁: kas-Ø-ú-ee</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>O₁₂₂₂₂: kas-Ø-ee-´u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

The next and final optimization step produces convergence. At this point, the second phonological cycle starts, which turns O₁₂₂₂₂, i.e., /kas-Ø-ee-ú/, into the surface representation kasˇaò.

4.4. **Ni-Insertion in Quechua**

Recall that the phonological operation of ni-e-penthesis breaking up super-heavy syllables seems to apply across an intervening exponent *lla* (‘just’) that would normally be expected to destroy the environment for ni-insertion both in Bolivian Quechua, where this process is obligatory (cf. (14): wawa-s-ni-lla-y (‘child-PL-N1-just-1.POSS’; ‘just my children’)), and in Huallaga Quechua, where it is optional (cf. (15-a): kikish-ni-lla-yki (‘armpit-just-2.POSS’; ‘just your armpit’). The basic pattern straightforwardly lends itself to the kind of analysis in terms of morphological movement we have given in the previous two subsections. In fact, the main difference to the analysis proposed for Barwar Aramaic is that the stem that is subject to inflection is of type N now, rather than of type V. The morphological array for exponents bearing the feature [Poss] is clearly part of the f-seq of nominal categories (possessive marking is a property of nouns); and the morphological array for exponents like *lla*, which is completely optional, is a marker denoting “limitation”, and “typically means ‘just’ or ‘only’, but also has a range of more subtle uses which are much harder to translate” (Myler (2013, 4.2)), clearly is not. By the same reasoning as in 4.2. above, we can therefore conclude that there are two MCs, MCₗim and MCₗim(litiation), and that the former outranks the latter. Given, furthermore, a parallel ranking for the alignment constraints Poss⇒R and Lim⇒R and a high-ranked L⇐N, morphological movement of the possessor exponent will be triggered after both MCs have been satisfied. The first optimization step for Bolivian...
Quechua *wawa-s-ni-lla-y* (‘child-PL-NI-just-1.POSS’) is shown in (47).\(^{31}\)

(47) **Ni-epenthesis is Bolivian Quechua** (harmonic serialism, step 1):

<table>
<thead>
<tr>
<th>I: [N wawa-s [●Poss], [●Lim], [PL], [1.POSS], {Limi /lla/∈[JUST]}], ...]</th>
<th>MC(_{Poss})</th>
<th>MC(_{Lim})</th>
<th>L⇐N</th>
<th>Poss⇒R</th>
<th>Lim⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_{11}): [N wawa-s [●Poss], [●Lim]]</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>O(_{12}): [N [N wawa-s]-y[●Lim]]</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>O(_{13}): [N [N wawa-s]-lla[●Poss]]</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>O(_{14}): [N y-[N wawa-s]: [●Lim]]</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>O(_{15}): [N lla-[N wawa-s]: [●Poss]]</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

After merging the possessor exponent /y/ in (47) because of highest-ranked MC\(_{Poss}\), the derivation gets rid of the next severe constraint violation (viz., that of MC\(_{Lim}\)) by merging /lla/; cf. (48).

(48) **Ni-epenthesis is Bolivian Quechua** (harmonic serialism, step 2):

<table>
<thead>
<tr>
<th>I(_{12}): [N [N wawa-s]-y[●Lim], [PL], [1.POSS], {Limi /lla/∈[JUST]}, ...]</th>
<th>MC(_{Poss})</th>
<th>MC(_{Lim})</th>
<th>L⇐N</th>
<th>Poss⇒R</th>
<th>Lim⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_{121}): [N [N wawa-s]-y[●Lim]]</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>O(_{122}): [N [N wawa-s]-ylla]</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Given the high ranking of L⇐N, /lla/ must be merged as a suffix in (48); and given the Strict Cycle Condition, it can only be added at the right edge, in violation of Poss⇒R. At this point, the first morphological cycle is concluded (all non-morphemic MCs have been satisfied), and the phonological operation of *ni*-epenthesis applies to O\(_{122}\), breaking up the super-heavy syllable with a rhyme consisting of a, s, and y: /wawa-s-y-lla/ becomes /wawa-s-ni-y-lla/; /lla/ is already part of the representation but does not intervene because it shows up at the right edge at this stage. After this, the morphological derivation continues; since Poss⇒R outranks Lim⇒R, morphological movement of /y/ across /lla/ is triggered; the counter-bleeding effect for *ni*-epenthesis is illustrated in (49).\(^{32}\) Finally, convergence is reached.

(49) **Ni-epenthesis is Bolivian Quechua** (harmonic serialism, step 3):

<table>
<thead>
<tr>
<th>I(_{122}): [N [N wawa-s]-ni-y]-ylla], [PL], [1.POSS], {... }, {... }</th>
<th>MC(_{Poss})</th>
<th>MC(_{Lim})</th>
<th>L⇐N</th>
<th>Poss⇒R</th>
<th>Lim⇒R</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_{121}): [N [N wawa-s]-ni-y]-ylla]</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

With respect to the optionality of the process in Huallaga Quechua, it can be assumed (essentially as postulated for the optionality of de-spirantization in subsection 4.2.) that *ni*-epenthesis always applies after the morphological derivation is complete; but it may or may not apply after the first morphological cycle (which can be implemented via the concept of constraint tie).

\(^{31}\) More precisely, this is the first optimization step that is relevant in the present context – we zoom in on the derivation after the plural exponent has been merged. The right-alignment constraint for the plural exponent must be ranked low, so that movement to the right periphery of the word is never triggered for this exponent.

\(^{32}\) Outputs carrying out suboptimal movement operations to the left edge are left out here; see (42).
Finally, as regards the contextually determined systematic variation in /lla/ placement visible in (17) in Huallaga Quechua (where /lla/ follows the possessor exponent if the latter co-occurs with a plural exponent, but not otherwise), we contend that the effect is due to a constraint COH(ERENCE) that is independently motivated in Trommer (2008), and ranked higher in the variety at hand; COH demands that two exponents that “belong together” in some sense must show up next to one another. See Müller (2018, ch. 2) for illustration of how COH can trigger and block movement of inflectional exponents in the harmonic serialist approach adopted here.

4.5. Ruki Rule Application in Sanskrit

The core observation here is that an inflected Sanskrit imperfective verb shows application of the ruki rule with prefixed verbs where the final segment of the prefix acts as a trigger, turning stem-initial s into retroflex s after r, u, k, and i, even though an imperfective (non-ş) exponent /a/ intervenes on the surface; cf. (20-c): /abhy-a-śiṅc-at/ (‘on-imperf-pour,- 3.sg’).

The general logic of the analyses presented so far implies that the prefix /abhǐ/ (‘unto’) combines with the stem /śiṅc/ (‘sprinkle’) before the imperfective exponent /a/ is added. It turns out that it suffices to make either of the two following traditional assumptions to derive this: (i) Compounding and derivation precede inflection; (ii) Prefix verbs are stored as such in the lexicon. In what follows, we will remain neutral as to the choice between (i) and (ii). Either way, there is a stage of the derivation that looks as in (50), with a complex verb /abhi-śiṅc/ consisting of prefix and stem as the input. Furthermore, we assume that the imperfective prefix /a/⇒[IMPERF] and the agreement suffix /at/⇒[3.sg] are part of two separate morphological arrays, MC_T and MC_Agr. Since three non-stem exponents and one stem exponent are involved, there need to be four alignment constraints; of these, Agr⇒R must be highest-ranked because agreement markers show up as suffixes, in violation of V⇒R; and L⇒P (for the prefix) and L⇒T (for the T exponent) are ranked lower, in this order.

(50) Ruki rule application in Sanskrit (harmonic serialism, step 1):

O11: [V [p abhǐ-[V śiṅc]]]: [●I•], [●Agr•]	MC_T	MC_Agr	Agr⇒R	V⇒R	L⇒P	L⇒T
O12: [V [p abhǐ-[V śiṅc]]-a]: [●Agr•]						
O13: [V a-[V p abhǐ-[V śiṅc]]]: [●Agr•]						
O14: [V [p abhǐ-[V śiṅc]]-at]: [●I•]						
O15: [V at-[V p abhǐ-[V śiṅc]]]: [●I•]						

The optimal output in (50) is O13, which merges the T exponent /a/ in a prefix position, at the cost of a violation of the constraint L⇒P, which requires the verbal prefix to be at the

33 This might be a simplification. One might argue that the two exponents instantiate a case of overlapping extended exponent (in Caballero & Harris’s (2012) terminology), with /at/ also being specified for (more general) PAST tense information. If so, the two exponents would then belong to a single morphological array, given the definition in (27), and could therefore only be targetted by a single MC (MC_T/Agr). Under this analysis, the second of the two exponents is merged with the stem not because of a MC, but so as to satisfy MAX faithfulness constraints (see Müller (2018, ch. 3)). This difference is orthogonal to the issue of morphological movement as such. However, the first morphological cycle would ceteris paribus be completed directly after step 1 in (50) (rather than after step 2 in (51), as we will see momentarily). While it is conceivable that this might give rise to different empirical predictions, we are not aware of any phonological effects that might bear on the issue whether /at/ is present or not at the stage when the ruki rule applies. Hence, it what follows we maintain the simpler version in terms of two MCs for T and Agr.
left edge, and which, as such, is ranked higher than \(L \leftarrow T \) but cannot be satisfied at this point because of \(V \Rightarrow R \) and the Strict Cycle Condition. In the next step, the Agr exponent /at/ is merged; see (51).

(51) **Ruki rule application in Sanskrit** (harmonic serialism, step 2):

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{I}_{131}: [v \ a-[v \ p \ \text{abhi-[v \ si\n\c]]}]: [\bullet \text{Agr} \bullet] & \text{MC}_T & \text{MC}_{Agr} & \text{Agr} \Rightarrow R & V \Rightarrow R & L \leftarrow P & L \leftarrow T \\
\{3, [SG], [IMPERF] \} & \{ [\text{Agr} / at/ \leftrightarrow [3, SG]] \} & ! & * & * & * & * \\
\text{Ruki rule application in Sanskrit} (harmonic serialism, step 2): & & & & & & \\
\text{MC}_{Agr} & \Rightarrow & V & \leftarrow P & L & \text{some productions are not shown} & \\
\hline
\end{array}
\]

The optimal output \(O_{132} \) in (51) violates \(V \Rightarrow R \) so as to satisfy higher-ranked \(\text{Agr} \Rightarrow R \); and it inherits the input’s violation of \(L \leftarrow P \) because \(\text{MC}_{Agr} \) is the higher-ranked constraint; see \(O_{132} \). However, at this point the word is structurally complete; consequently, a first phonological cycle is initiated, and the ruki rule applies under adjacency of /abhi/ and /si\n\c/.

Next, the prefix /abhi/ moves to the left edge, because of \(L \leftarrow P \gg L \leftarrow T \); cf. (52).\(^{34}\)

(52) **Ruki rule application in Sanskrit** (harmonic serialism, step 3):

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{I}_{133}: [v \ a-[v \ p \ \text{abhi-[v \ si\n\c]]}]: [\bullet \text{Agr} \bullet] & \text{MC}_T & \text{MC}_{Agr} & \text{Agr} \Rightarrow R & V \Rightarrow R & L \leftarrow P & L \leftarrow T \\
\{3, [SG], [IMPERF] \} \{ \} & \{ [\text{Agr} / at/ \leftrightarrow [3, SG]] \} & * & * & * & * & * \\
\text{Ruki rule application in Sanskrit} (harmonic serialism, step 3): & & & & & & \\
\text{MC}_{Agr} & \Rightarrow & V & \leftarrow P & L & \text{some productions are not shown} & \\
\hline
\end{array}
\]

Thus, morphological movement of exponents counter-bleeds a phonological operation, as before: /al/ does not intervene at the relevant stage of the derivation even though it does intervene on the surface.\(^{35}\) Finally, convergence is reached, and the second set of phonological operations can apply.

4.6. **Vowel Harmony in Kazakh**

As shown above (cf. (23)), vowel harmony in Kazakh affects a final Q exponent /bA/ across an intervening instrumental case exponent /men/ that does not participate in the process and should be expected to block spreading of the stem’s backness value to the Q marker; cf. *böl* /fæl* nan-men-*ba* (*this old.man bread-INSTR-Q*) vs. *böl* /fæl* bøbek-*men-*be* (*this old.man baby-INSTR-Q*). The first thing to note is that interrogativity is a grammatical category for which nouns can be inflected in Kazakh, just like declarativity; the feature [C] of which Q is a possible value is part of the f-seq of nominal projections. Next, we propose that the instrumental case exponent /men/ does not share a morphological array with the other case exponents in the language, and is introduced into words by a special, designated \(\text{MC}_{Instr} \) constraint that is outside of the regular, f-seq-determined order. In line with this special morpho-syntactic behaviour, /men/ also exhibits unusual phonological properties: It cannot be stressed and, more importantly in the present context, it resists vowel harmony. Under these assumptions, the apparently non-local instance of vowel harmony can be derived in a strictly local fashion in the same way as the phonological processes discussed in the

\(^{34}\) Again, outputs employing other kinds of movement are ignored in the tableau.

\(^{35}\) This conclusion is also reached in the analyses of the phenomenon developed by Kiparsky (1982) and Myler (2017). Kiparsky’s analysis presupposes a counter-cyclic operation integrating /al/; Myler’s approach actually also employs movement of /abhi/, like the present one (albeit of a very different type). Cf. section 5.
previous sections: The order of the right-alignment constraints for the C exponent /ba/ and the instrumental exponent /men/ is the same as the order of the two MCs.

Thus, to generate a word like nan-men-ba (‘bread-INSTR-Q’), the noun stem /nan/ is first merged with the Q exponent /ba/, as in O₁₂, which wins the competition in (53).

(53) **Vowel harmony in Kazakh** (harmonic serialism, step 1):

| I₁: [N nan]: [• C•, [• Instr]] [SG], [Q], [INSTR] \{[c /ba/→[Q] \}, \{[Instr /men/→[INSTR]] \}, \} | MC_C | MC_Instr | L⇐N C⇒R Instr⇒R |
|---|---|---|---|---|
| O₁₃: [N nan]: [• C•, [• Instr]] | *! | * |
| ☞ O₁₂: [N [N nan]-ba]: [• Instr] | * |
| O₁₃: [N bA-[N nan]]: [• Instr] | * | *! | * |
| O₁₄: [N [N nan]-men]: [• C•] | *! |
| O₁₅: [N men-[N nan]]: [• C•] | *! | * | * |

In the second step, /men/ is merged as a suffix; cf. (54).

(54) **Vowel harmony in Kazakh** (harmonic serialism, step 2):

| O₁₂: [N [N nan]-ba]: [• Instr] [SG], [Q], [INSTR] \{[\ldots \}, \{[Instr /men/→[INSTR]] \}, \ldots \} | MC_C | MC_Instr | L⇐N C⇒R Instr⇒R |
|---|---|---|---|---|
| O₁₂: [N [N nan]-ba]: [• Instr] | *! |
| ☞ O₁₂: [N [N nan]-ba]-men] | * |
| O₁₃: [N men-[N nan]-ba]] | *! | * |

At this point, the first morphological cycle is finished because the N stem has exhausted its structure-building features. Vowel harmony applies, spreading backness from the stem to the adjacent Q suffix /ba/; /men/ is pre-specified for resisting vowel harmony, and so does not change. The output of this round of phonological spell-out is then subjected to the next morphological cycle. Now, movement of the Q exponent /ba/ to the right edge takes place because C⇒R outranks Instr⇒R; see (55) (where outputs with suboptimal movements are ignored, as before).

(55) **Vowel harmony in Kazakh** (harmonic serialism, step 3):

| O₁₂: [N [N nan]-ba]-men] [SG], [Q], [INSTR] \{[\ldots \}, \{[\ldots \} | MC_C | MC_Instr | L⇐N C⇒R Instr⇒R |
|---|---|---|---|---|
| O₁₂: [N [N nan]-ba]-men] | *! |
| ☞ O₁₂: [N [N nan]-ba]-men] | * |

The next step is the final step; O₁₂₂ as the input is mapped to the same output. As before, a seemingly non-local phonological process (vowel harmony) emerges as a local process that is counter-bled by morphological movement.

4.7. **Conclusion**

To conclude so far, we have looked at five different seemingly non-local phonological operations and have argued that they can all be conceived of as strictly local operations in the harmonic serialist approach to inflectional morphology developed in Müller (2018). In this approach, the defining property of harmonic serialism that competing outputs can differ from the input by application of at most one elementary operation, together with the Strict
Cycle Condition, automatically yields the consequence that alignment constraints that need to be postulated for reasons entirely unrelated to movement may force exponents to leave the position they are first merged in, and move to an edge position later in the derivation. Given the assumption that a first set of phonological operations can in principle apply as soon as a morphological word is complete (i.e., has all the non-morphemic exponents required by the structure-building constraints), the phonological operations we have investigated here can all be shown to be counter-bleed by subsequent morphological movement.

In this paper, we have focussed on inflectional morphology. We suspect that there may turn out many more cases in this area once one starts looking in earnest for the relevant patterns. Furthermore, it can be noted that similar phenomena involving apparently non-local phonological effects have also been observed for derivational morphology; see in particular Hyman (1994; 2002; 2003) on frication that seems to be triggered by non-local causative exponent in Bemba, and Myler (2017) on reduplication involving a non-local passive exponent in Ndebele. Assuming structure-building and linearization in derivational morphology to proceed in the same way as in inflectional morphology, these kinds of data would seem to lend themselves to the same kinds of analyses.

More generally, then, we take it that the phenomenon under discussion can be viewed as further support for a principled approach to morphological movement of exponents. As noted above, there are other arguments for this concept detailed in Müller (2018), based on discontinuous exponence, partially superfluous extended exponence, and non-local stem allomorphy. An additional conceptual argument for morphological movement of the type assumed here is that it permits stating, via shared, uniform f-seqs, a version of Mirror Principle that is not necessarily falsified by deviating surface orders: On this view, what counts for the Mirror Principle in both syntax and morphology is the initial order in which items are merged; this may subsequently then be undone by movement.

Needless to say, there are many features of the approach to inflectional morphology adopted here that would be in need of further discussion and justification. We cannot possibly do this in the present paper; see Müller (2018) for extensive discussion. However, in the final part of the paper, we would like to consider alternatives to morphological movement of inflectional exponents in harmonic serialism, as they have been proposed for some of the above phenomena in the literature.

5. Alternative Approaches

[tbw]

References

Chomsky, Noam (2019): Lectures. UCLA & MIT.

Grammar and Harmonic Serialism. Equinox, Sheffield.

