1. Introduction

Observation:
In addition to the lexicon and structure-building operations, a derivational approach to syntax along the lines sketched in [1] crucially relies on constraints. There are various constraint types. Most importantly, constraints can be local or non-local.

(1) Constraint types:
 a. A local derivational constraint (Cond) applies to syntactic (Merge or Move) operations.
 b. A local representational constraint (Conr) (“filter”) applies to an output representation.
 c. A global constraint (Cong) applies to a whole derivation; it correlates non-adjacent steps in the derivation.
 d. A translocal constraint (Contl) applies to sets of output representations; it picks out an optimal output representation among competing output representations.
 e. A transderivational constraint (Contd) applies to sets of derivations; it picks out an optimal derivation among competing derivations.

(2) Complexity of constraint types:
 derivational constraints, representational constraints < global constraints < translocal constraints < transderivational constraints

Strategy:
If constraint C\textsubscript{1} and constraint C\textsubscript{2} can account for a given phenomenon in the same way and C\textsubscript{1} is less complex than C\textsubscript{2} then, other things being equal, choose C\textsubscript{1}.

Note:
This strategy does not imply that transderivational, translocal, or global constraints should be abandoned.

A meta-constraint on constraints:
Constraints should be as general as possible.

Observation 1:
Most of the constraints used so far are derivational constraints (see, e.g., the Economy Con-
1. Introduction

(3) **Economy Constraint on Merge**: Merge can only apply if it deletes the highest-ranked selectional feature of a LI.

(4) **Linearization Constraint on Merge**: The output of Merge in language L_i must conform to the linear precedence statements of L_i.

Observation 2: In contrast, the **Interpretability Condition** is a representational constraint: It prohibits uninterpretable features in the final output representation, but not during the derivation (where such features are in fact essential).

(5) **Interpretability Condition**: Features on LIs that are uninterpretable at level R_i must be removed at level R_{i-1}.

However, this presupposes that we know in the syntax which features are semantically interpretable, and which ones are not. This assumption is not innocuous; but if there is good reason to abandon it, then we end up with the result that the Interpretability Condition is a much more complex constraint, viz., a global constraint that takes into account aspects of the derivation that are post-syntactic (i.e., semantic).

Observation 3: The constraint **Timing of Feature Deletion** (aka “Earliness”) is not a local derivational constraint, a local representational constraint, or a global constraint. To find out whether this constraint is respected by a derivation or not, one has to compare it with other derivations: A derivation respects (6) if, among a class of competing derivations that need to be defined appropriately (e.g., in terms of the same LA), the deletion of a given feature occurs at the earliest step. Suppose, e.g., that derivations D_1, D_2, D_3 and D_4 compete, and a feature F is deleted in step 3 of D_1, step 4 of D_2, step 6 of D_3, and step 9 of D_4. Then, only D_1 respects Timing of Feature Deletion.

(6) **The Timing of Feature Deletion**: Uninterpretable features are deleted as soon as possible.

Question: What kind of constraint is the Inclusiveness Condition?

(7) **Inclusiveness Condition**: Material that is not part of the lexical array (other LIs, additional features) is inaccessible throughout a derivation.

Answer: The Inclusiveness Condition should best be viewed not as a syntactic constraint at all; rather, it is a meta-constraint grammars, i.e., a hypothesis about the nature of syntactic operations.
2. Movement to SpecC

2.1. Wh-Movement

2.1.1. Embedded Clauses

Problem:
So far, a sentence like (8) cannot be generated:

(8) Embedded wh-questions in English:

I wonder what she read

Solution:
A [+wh] C item in English requires movement of a wh-phrase in wh-questions. It has a selectional feature [*Q*] that must be deleted under identity with a wh-phrase bearing a [Q]-feature in SpecC. (The [Q]-feature of wh-phrases is often called [wh]-feature. To avoid ambiguity – cf. the relation between V and C on the one hand, the relation between C and D on the other –, the two features are distinguished here.)

(9) LA of (8):

a. read: { [V], [3pers,–pl,+fem], [+fin,+past], [*D*] > [*D*], [*acc*] }

b. she: { [D], [3pers,–pl,+fem], [nom] }

c. what: { [D], [3pers,–pl,+fem,–masc], [acc], [Q] }

d. Ø: { [T], [3pers,–pl,+fem], [+fin,+past], [*V*,*+fin*,*+past*] > [*nom*] }

e. Ø: { [C], [+wh], [+fin], [*T*,*+fin*] > [*Q*].

f. I: { [D], [1pers,–pl,+masc], [nom] }

g. wonder: { [V], [1pers,–pl,+masc], [+fin,—past], [*C*,*+wh*] > [*D*] }

h. Ø: { [T], [1pers,–pl,+masc], [+fin,—past], [*V*,*+fin*,*—past*] > [*nom*] }

i. Ø: { [C], [root], [—wh], [+fin], [*T*,*+fin*].

(10) Derivation of (8):

a. Merge ([V read], [D what]) → [VP [V read] [DP what]]

b. Merge ([D she], [VP [V read] [DP what]]) → [VP [DP she] [V [V read] [DP what]]]

c. Merge ([T Ø], [VP [DP she] [V [V read] [DP what]]])

→ [TP [T Ø] [VP [DP she] [V [V read] [DP what]]]]

d. Move ([DP she], [TP [T Ø] [VP [DP she] [V [V read] [DP what]]])

→ [TP [DP she] [T' [T Ø] [VP t1 [V [V read] [DP what]]]]]

e. Merge ([C Ø], [TP [DP, she] [T' [T Ø] [VP t1 [V [V read] [DP what]]]]]

→ [CP [C Ø] [TP [DP, she] [T' [T Ø] [VP t1 [V [V read] [DP what]]]]]]
2. Movement to SpecC

f. Move ([DP what] [CP [C Ø] [TP [DP1 she] [VP t1 [V' [V read] [DP what]]]]))
 \rightarrow [CP [DP2 what] [C' [C Ø] [TP [DP1 she] [T' [T Ø] [VP t1 [V' [V read] t2]]]])])

g. Merge ([V wonder], [CP [DP2 what] [C' [C Ø] [TP [DP1 she] [T' [T Ø] [VP t1 [V' [V read] t2]]]]))
 \rightarrow [VP [V wonder] [CP [DP2 what] [C' [C Ø] [TP [DP1 she] [T' [T Ø] [VP t1 [V' [V read] t2]]]])])
 \rightarrow [CP [C Ø] [TP [DP3 I] [T' [T Ø] [VP t3 [V' [V wonder] [CP [DP2 what] [C' [C Ø] [TP [DP1 she] [T' [T Ø] [VP t1 [V' [V read] t2]]]]])]])]

(11) More complex wh-phrases:
Which book will she buy?

(12) Partial LA of (11):
 a. which: { [D], [3pers,–pl,–fem,–masc], [acc], [Q], [*N*] }
 b. book: { [N], [3pers,–pl,–fem,–masc], [acc] }

2.1.2. Root Clauses

Problem:
Root clauses pose an additional problem. There are two Move operations to the C domain:
The wh-phrase moves as before; in addition, a finite auxiliary or modal verb is fronted.
(Movement of a finite main verb is impossible in this context; cf. *What said she?*. In this
case, a dummy auxiliary *do* must be inserted: *What did she say?*; this is called “do-support”.)

(13) What has she said?

Assumption:
There are two types of movement:
(i) XP movement = movement of a maximal projection to a specifier position.
(ii) X (head) movement = movement of a minimal projection (= a LI) to a LI position, via
 adjunction to the LI.

(14) Intended structure of (13):
 [CP [DP2 what] [C [T3 has] [C Ø]] [TP [DP1 she] [T' [t3 [VP t1 [V' [V said] t2]]]]])

Note:
So far, it has been (more or less tacitly) assumed that only maximal projections can be moved.
Given that head movement also exists, further assumptions must be made.

(15) XP vs. X movement:
 a. A feature [*F*] can only trigger XP movement.
 b. A feature [*F-LI*] can only trigger movement of a LI.

(16) Structure Preservation Principle:
2. Movement to SpecC

a. XP movement ends up in a specifier position.
b. LI movement ends up in an adjunction position of another LI.

Assumption:
A root C bearing [*Q*] has a [*T-LI*] feature that also triggers movement of the auxiliary.

(17) LA of (13):

a. said: \{ [V], [+fin,+part], [*D*] \} \rightarrow [*

b. she: \{ [D], [3pers,-pl,+fem], [nom] \}

c. has: \{ [T], [3pers,-pl,+masc], [+fin,+past], [*V*,*–fin*,*+part*] \}

d. what: \{ [D], [3pers,-pl,-fem,-masc], [acc], [Q] \}
e. Ø: \{ [C], [root], [+wh], [+fin], [*T*,*+fin*] \} \rightarrow [*

Note:
So far, it is only predicted that an empty [+wh] C element requires movement of a bare T. It does not yet follow that T is phonologically empty when a local wh-subject is moved, and is realized by an appropriate form of do otherwise. (And an attempt to account for this will not be made here.)

Question:
Can it be ensured that C in (17-e) never triggers two Merge operations with separate T LIs, rather than Merge with TP and Move of T?

Answer:
This follows from the assumption that there cannot be more than one T element per clause. Incidentally, similar questions arise with movement to SpecT and SpecC.

2.2. Topicalization

Observation:
Topicalization is similar to wh-movement, but it is movement to a [–wh] SpecC position. It is not accompanied by head movement in English.

(18) Topicalization in English:

a. [CP John₁ C [TP she does not really like t₁]]
b. I think that [CP John₁ C [TP she does not really like t₁]]

Note:
Topicalization systematically goes hand in hand with movement of the finite verb to C in German, Dutch, and the Scandinavian languages:

(19) Topicalization in German:

a. [CP Den Fritz₁ mag₂ [TP sie sehr t₁ t₂]]

 ART Fritzₐcc likes sheₙom much
3. The A-over-A Principle

b. Ich glaube [CP den Fritz₁ mag₂ [TP sie sehr t₁ t₂]]
 I think ART Fritzₐcc likes sheₙom much

Note:
German has linear precedence statements that are different from those of English. In particular, V (and perhaps T) heads follow their specifiers and their complements.

(20) Verb-final VPs in German:
 a. ... dass Fritz Maria mag
 that Fritzₙom Mariaₜmc likes
 b. Den Fritz₁ hat₂ sie sehr t₁ gemocht t₂
 ART Fritzₜacc has sheₙom much liked

Analysis:
Topicalization is triggered by a [*top*] feature on C and a corresponding [top] feature on some other XP. C is always marked [*V-LI*,*+n*] in German if it bears the feature [root] (the verb-second effect). (Assumption: Auxiliaries and modals are also [V] in German.)

2.3. Relativization

Observation:
Relativization is similar to wh-movement and topicalization; it moves a relative pronoun (or relative phrase) to SpecC. The relative clause itself is a modifier of an N; it follows N.

(21) Relativization:
 a. I know [DP a man [CP who₁ C [TP t₁ T [VP t₁ likes cars]]]]
 b. She likes [DP the book [CP which₂ John gave her t₂]]

Analysis:
(i) A relative pronoun (D) has the feature [rel].
(ii) The head of a relative clause (C) has the feature [*rel*].

3. The A-over-A Principle

(22) A-over-A Principle by Chomsky (1964):
 In a structure ... [A ... [A ...] ...] ..., an operation can only affect the higher, more inclusive category A.

Note:
The A-over-A Principle is a local derivational constraint. To find out whether a given derivation respects it or not, each (Move) operation must be checked, by taking into account the phrase marker constructed so far.

(23) A first consequence of the A-over-A Principle:
 a. [DP₁ My letter to [DP₂ a friend in Italy]] got lost
b. *[DP₂ Who] did [DP₁ my letter to t₂] get lost?

c. [DP₁ Which letter to [DP₂ a friend in Italy]] got lost?

d. *John is the friend [DP₂ who] C [DP₁ my letter to t₂] got lost

e. This is the letter [DP₁ which] t₁ got lost

(24) **Another consequence of the A-over-A Principle:**

a. John heard [DP₁ a rumour that you had read [DP₂ this book]]

b. *[DP₂ What] did John hear [DP₁ a rumour that you had read t₂]?

c. [DP₁ Which rumour that you had read [DP₂ this book]] did John hear?

d. *This is a book [DP₂ which] John heard [DP₁ a rumour that you had read t₂]

e. This a rumour [DP₁ which] John heard t₁

Note:

The A-over-A Principle can be reformulated as a representational constraint on outputs.

(25) **A-over-A Principle**° (representational version):

*... A₂ ... [A₁ ... t₂ ...] ...] ...

Note:

Crucially, this formulation relies on the existence of traces, and this is in fact one of the two main reasons why one would want to postulate traces in the first place (the other main reason being that traces are relevant for semantic interpretation).

Motivating traces:

Traces are needed by representational constraints.

Problem:

The A-over-A Principle is too strong and too weak. The first problem is potentially severe; the second problem makes the A-over-A Principle look less plausible.

(26) **Well-formed DP-over-DP examples ruled out by the A-over-A Principle:**

a. [DP₂ Who would you approve of [DP₁ my seeing t₂]]

b. [DP₂ Which author] did you read [DP₁ a book about t₂]?

(27) **Well-formed CP-over-CP examples ruled out by the A-over-A Principle:**

a. John wouldn’t say [CP₁ that Mary thinks [CP₂ that Bill is nice]]

b. [CP₂ That Bill is nice] John wouldn’t say [CP₁ that Mary thinks t₂]

c. Fritz hat behauptet [CP₁ Maria würde denken [CP₂ dass er nett ist]]

Fritz has claimed Maria would think he nice is

d. [CP₂ Dass er nett ist] hat Fritz behauptet [CP₁ würde Maria denken t₂]

(28) **Well-formed VP-over-VP (-over VP) examples ruled out by the A-over-A Principle:**

a. Fritz hat [VP₁ zu arbeiten] versucht

Fritz has to work tried
3. The A-over-A Principle

b. $[\text{VP}_2 \text{ Zu arbeiten }]$ hat Fritz $[\text{VP}_1 \text{ t}_2 \text{ versucht }]$
to work has Fritz$_{nom}$ tried
c. $[\text{VP}_1 [\text{VP}_2 \text{ Zu arbeiten }]]$ versucht hat Fritz t_1
to work tried has Fritz$_{nom}$
d. Ich $[v_3 \text{ denke }]$ nicht $[\text{VP}_0 \text{ t}_3 [\text{CP} \text{ dass er } [\text{VP}_1 [\text{VP}_2 \text{ zu arbeiten }]] \text{ versucht }]]$
I think not that he to work tried has
e. $?[\text{VP}_1 [\text{VP}_2 \text{ Zu arbeiten }]]$ versucht $\text{denke ich nicht } [\text{VP}_0 \text{ t}_4 [\text{CP} \text{ dass er } t_1 \text{ hat }]]$
to work tried think I not that he has
f. $?[\text{VP}_2 \text{ Zu arbeiten }]$ $\text{denke ich nicht } [\text{VP}_0 \text{ t}_4 [\text{CP} \text{ dass er } [\text{VP}_1 \text{ t}_2 \text{ versucht }]]]$
to work think I now that he tried has

(29) *An ill-formed example not ruled out by the A-over-A Principle – AP movement from DP:*

a. You have $[\text{DP}_1 \text{ a } [\text{AP}_2 \text{ very intelligent }] \text{ sister }]$

b. $[\text{DP}_1 [\text{AP}_2 \text{ How intelligent }] \text{ a } \text{ t}_2 \text{ sister }]$ do you have ?
c. *$[\text{AP}_2 \text{ How intelligent }]$ do you have $[\text{DP}_1 \text{ a } \text{ t}_2 \text{ sister }]$?

(30) *Another ill-formed example not ruled out by the A-over-A Principle – DP movement from PP (`preposition stranding’):

a. Sie spielt $[\text{PP}_1 \text{ mit } [\text{DP}_2 \text{ dem grünen Auto }]]$
she plays with the green car
b. $[\text{PP}_1 \text{ Mit } [\text{DP}_2 \text{ welchem Auto }]]$ spielt sie t_1 ?
with which car plays she
c. *$[\text{DP}_2 \text{ Welchem Auto }]$ spielt sie $[\text{PP}_1 \text{ mit } t_2]$?
which car plays she with
d. $[\text{PP}_1 \text{ Mit } [\text{DP}_2 \text{ dem grünen Auto }]]$ spielt sie t_1
with the green car plays she
e. *$[\text{DP}_2 \text{ Diesem Auto }]$ spielt sie $[\text{PP}_1 \text{ mit } t_2]$
this car plays she with

Outlook: the future:
The A-over-A Principle is formulated in terms of categorial features. The selectional features triggering movement that have been adopted so far ([*D*]/*[nom*], [*Q*], [*top*], [*rel*]) are not (necessarily) categorial, though. What would happen if the A-over-A Principle were revised as an F-over-F Principle?

(31) *F-over-F Principle* d.

In a structure $\alpha^{[*F^*]}$... $[\beta^{[F]}$... $[\gamma^{[F]}$... $]$... $]$, movement to $[*F^*]$ can only affect the category bearing the [F] feature that is closer to [*F*].

Note:
This is in fact (a subcase of) a constraint that is widely adopted in most recent versions of the minimalist program (see below).
Back to the sixties:
In reaction to Chomsky’s A-over-A Principle, Ross (1967) developed a theory of islands, i.e., categories that are opaque for movement.

4. The Complex NP Constraint

(32) Complex NP Constraint\(^d\) (Ross (1967)):
No element contained in a CP dominated by a DP may be moved out of that DP.

Note on terminology:
It was a standard assumption until the late eighties that NP dominates DP, not DP NP, as assumed here (and in most current work). Hence, the original Complex NP Constraint is a constraint on movement from NP, not from DP. The constraint is still known under its original name, which is therefore also adopted here, even though “Complex DP Constraint” might be more appropriate. The Complex NP Constraint accounts for some of the data that motivated the A-over-A Principle.

(33) A consequence of the Complex NP Constraint, relative clauses:
 a. *[DP₁ Which book] did John meet [DP₂ a child [CP who read t₁]] ?
 b. *[DP₁ Who] does Mary know [DP₂ a girl [CP who is jealous of t₁]] ?

(34) A consequence of the Complex NP Constraint, argument clauses (see (24-b)):
 a. ??[DP₁ Which book] did John hear [DP₂ a rumour [CP that you had read t₁]] ?
 b. *[PP₁ How] did John hear [DP₂ a rumour [CP that you had fixed the car t₁]] ?
 c. *The hat [DP₁ which] I believed [DP₂ the claim [CP that Otto was wearing t₁]] is red

Note:
Movement from argument clauses (selected categories) in complex DPs typically yields much better results than movement from relative clauses (non-selected, modifier categories). However, this does not hold for movement of modifiers themselves, which is completely impossible throughout (see (34-a) vs. (34-b)).

(35) Complex NP Constraint\(^r\) (representational version):
*... α₁ ... [DP ... [CP ... t₁ ...]] ...

5. The Sentential Subject Constraint

(36) Sentential Subject Constraint\(^d\) (Ross (1967)):
No element dominated by a CP may be moved out of that CP if that CP is a subject.

(37) A consequence of the Sentential Subject Constraint:
 a. [DP₁ Who] did the reporters expect [CP that the principal would fire t₁] ?
 b. *[DP₁ Who] was [CP that the principal would fire t₁] expected by the reporters ?
c. *[DP1 Who] did [CP that Mary was going out with t1] bother you?

(38) **Sentential Subject Constraint** (representational version):
*... α1 ... [CP ... t1 ...] ... if CP is a subject.

Note:
Given the terminology adopted so far, “subject” means “element in SpecT”. However, movement to SpecT is triggered by [*nom*]. Does that mean that CPs actually bear abstract [nom] Case, so that they can move to SpecT if they are external arguments? If one does not want to make that assumption, the following options are available:

(i) The notion of subject is replaced by the notion of external argument in the formulation of the Sentential Subject Constraint; CPs are never in SpecT (they may be in VP or undergo topicalization).

(ii) CPs are in fact embedded by empty DPs that have abstract Case (compare Kiparsky & Kiparsky (1970)).

6. **Subject Condition**

Note:
The Sentential Subject Constraint can be generalized: DP subjects are also islands, even if they do not qualify as complex in the sense of the Complex NP Constraint.

(39) **Subject Condition**d (Chomsky (1973), Huang (1982), Chomsky (1986), Freidin (1992)):
No element may be moved out of a subject.

(40) **Subject Condition** (see (23)):

a. *[DP2 Who(m)] has [DP1 a comment about t2] annoyed you?

b. *[PP3 About whom] has [DP1 a comment t3] annoyed you?

(41) **Subject Condition**r (representational version):
*... α1 ... [β ... t1 ...] ... if β is a subject.

7. **The Coordinate Structure Constraint**

(42) **Coordinate Structure Constraint**d (Ross (1967)):
In a coordinate structure, no conjunct may be moved, nor may any element contained in a conjunct be moved out of that conjunct.

(43) A consequence of the Coordinate Structure Constraint – movement from a conjunct:

a. John is [AP proud of [DP1 his father]] and [AP tired of [DP2 his mother]]

b. *[DP1 Who] is John [AP proud of t1] and [AP tired of [DP2 his mother]]?

c. *[DP2 Who] is John [AP proud of [DP1 his father]] and [AP tired of t2]?
8. The Upward Boundedness Constraint

Note:
It is not quite clear what the phrase structure of coordination looks like. An assumption that is sometimes made is that and is the head of a “coordination phrase”, and this would get the word order facts right; but it also raises several problems. E.g.: What about coordinations with three conjuncts: α, β, and γ? If and is the head, how can the categorial features (like [A] in (43)) be visible for the selecting head (is bearing [*A*] in (43)?)

(44) A second consequence of the Coordinate Structure Constraint – movement of a conjunct:
 a. John likes [DP₁ Mary] and [DP₂ Bill]
 b. *[DP₁ Who] does John like t₁ and [DP₂ Bill] ?
 c. *[DP₂ Who] does John like [DP₁ Mary] and t₂ ?

(45) Coordinate Structure Constraint* (representational version):
*... α₁ ... [β ... t₁ ...] ..., where β is a coordinate structure.

Note:
This presupposes that a coordinate structure is a constituent. Indeed, it can be moved:

(46) Coordinate structures are constituents:
 a. [DP₁ Mary] and [DP₂ Bill] are t in the garden
 b. [DP₁ Mary] and [DP₂ Bill], John does not really like t

Note:
There is an interesting exception to the Coordinate Structure Constraint: If movement simultaneously affects both conjuncts, the Coordinate Structure Constraint does not hold. This is known as Across-the-board rule application. (See Ross (1967), Williams (1978), Gazdar (1981)).

(47) Across-the-Board rule application:
 a. I wonder [CP [DP₁ which books] John hates t₁ and Mary likes t₁
 b. I know a man [CP [DP₁ who] John [VP saw t₁] and [VP liked t₁]]
 c. The doctor [CP [DP₃ who] [TP₁ John worked for t₃] and [TP₂ Mary relied on t₃]]] died

Problem:
It remains unclear how Across-the-board movement (two sources, one moved item) can be accounted for in the incremental approach adopted here.

8. The Upward Boundedness Constraint

Assumption:
Rightward movement (extraposition, heavy NP (DP) shift) exists. It is typically optional. (Some – optional – [*F*] features can only be deleted by movement to a right-peripheral
specifier.)

(48) **Rightward movement:**

a. \[\text{DP The claim } t_1 \text{ was refuted } [\text{CP, that all languages are context-free }]\]
b. John \[\text{VP returned } t_1 \text{ [PP to the library] } [\text{DP, all the books } [\text{CP, which he had borrowed }]\]
c. \[\text{DP A review } t_1 \text{ came out yesterday } [\text{PP, of this article }]\]

(49) **Upward Boundedness Constraint** (Ross (1967)):

No element that is moved rightward may be moved out of the next higher CP.

(50) **Upward Boundedness Constraint** (representational version):

*... \[\text{CP ... } t_1 ... \] ... \(\alpha_1\) ...

Note:

This constraint is also known as the *Right Roof Constraint* (see, e.g., Perlmutter & Soames (1979)).

(51) **A consequence of the Upward Boundedness Constraint:**

a. \[\text{CP}_0 \text{ It is catastrophic } [\text{CP}_1 \text{ that } \text{DP}_2 \text{ a review } [\text{PP}_3 \text{ of this article }]] \text{ came out yesterday }]\]
b. \[\text{CP}_0 \text{ [CP}_1 \text{ That } \text{DP}_2 \text{ a review } [\text{PP}_3 \text{ of this article }]] \text{ came out yesterday }] \text{ is catastrophic }\]
c. \[\text{CP}_0 \text{ [CP}_1 \text{ That } \text{DP}_2 \text{ a review } t_3 \text{ came out yesterday } [\text{PP}_3 \text{ of this article }]] \text{ is catastrophic }\]
d. *\[\text{CP}_0 \text{ [CP}_1 \text{ That } \text{DP}_2 \text{ a review } t_3 \text{ came out yesterday] is catastrophic } [\text{PP}_3 \text{ of this article }]\]

(52) **Another consequence of the Upward Boundedness Constraint:**

a. \[\text{CP}_0 \text{ Fritz denkt } [\text{CP}_1 \text{ dass Antje } \text{DP}_2 \text{ den Versuch } [\text{CP}_3 \text{ mit fünf Bällen zu jonglieren }]] \text{ aufgegeben hat } [\text{CP}_4 \text{ weil er sie nicht mehr sieht }]] \text{ juggle given up has because he her not anymore sees}\]
b. \[\text{CP}_0 \text{ Fritz denkt } [\text{CP}_1 \text{ dass Antje } \text{DP}_2 \text{ den Versuch } t_3 \text{ aufgegeben hat } [\text{CP}_4 \text{ mit fünf Bällen zu jonglieren }]] \text{ moeten geven up has with five balls to juggle because he her not anymore sees}\]
c. *\[\text{CP}_0 \text{ Fritz denkt } [\text{CP}_1 \text{ dass Antje } \text{DP}_2 \text{ den Versuch } t_3 \text{ aufgegeben hat } [\text{CP}_4 \text{ mit fünf Bällen zu jonglieren }]] \text{ omdat hij/ze niet meer ziet }]] \text{ because he her not anymore sees with five balls to juggle}
9. The Left Branch Condition

(53) *Left Branch Condition* (d) (Ross (1967)):
The leftmost item of an NP cannot be moved out of that NP.

(54) *Left Branch Condition* (representational version):
*... α_1 ... [NP t_1 ... N ...] ...

Note:
Like the Complex NP Constraint, the original Left Branch Condition presupposes a structure of nominal XPs that differs from the one adopted here, viz., (55-b) (where NP dominates DP) rather than (55-a) (where DP dominates NP), as assumed here and in most current literature.

(55) *DP vs. NP:*
 a. [DP D [NP ... N ...] ...]
 b. [NP [DP D] ... N ...]

(56) A consequence of the Left Branch Condition under (55-b):
 a. *[DP_1 Which] did you buy [NP t_1 books] ?
 b. *[DP_1 Whose] did you meet [NP t_1 sister] ?

Note:
It seems that the Left Branch Condition is needed to rule out (56-a) only if structure (55-b) is adopted. If we assume structure (55-a), the prohibition against movement of which will not be needed because (a) the [*Q*] feature that triggers wh-movement does not permit head (LI) movement of D, and (b) if the whole DP moves, it has to carry the NP along. (Similar conclusions apply in the case of (56-b) if whose does not (fully) occupy SpecD – e.g., if whose is analyzed as who in SpecD plus ’s in D.)

However:
The Left Branch Condition rules out sentences like (57-b) under either (55-b) or (55-a) if we understand “leftmost item” as “leftmost phonologically visible item”.

(57) A further consequence of the Left Branch Condition:
 a. Hans hat [DP D [NP [AP_1 neue] Bücher]] gekauft
 Hans has new books bought
 b. *[AP_1 Neue] hat Hans [DP D [NP t_1 Bücher]] gekauft
 new has Hans books bought

Note:
Ross noted that there are Left Branch Condition violations in a number of languages; see, e.g., (58). Given (55-b), one can then simply assume that the Left Branch Condition does not hold in these languages; but it is a priori unclear how to reconcile the very existence of data such as those in (58) with the structure in (55-a).
10. The Wh-Island Condition

(58) **Left Branch Condition violations in Russian:**

a. \[\text{NP} \, [\text{DP} \, \text{Cju}] \, [\text{N knigu}] \, \text{tyraitš' } t_1 ? \]
 whose book you read

b. \[\text{DP} \, \text{Cju}] \, \text{tyraitš' } [\text{NP} \, t_2 \, [\text{N knigu}]] ? \]
 whose you read book

Note:
The Left Branch Condition can be generalized. This accounts for more data, but it also raises more problems.

(59) **Generalized Left Branch Condition**\(^d\) (Ross (1967), Gazdar (1981)):
The leftmost item of an XP cannot be moved out of that XP.

(60) **Generalized Left Branch Condition effects, APs:**

a. \[\text{AP} \, [\text{XP} \, \text{How } sanē] \, \text{is John } t_1 ? \]

b. \[*[\text{XP} \, \text{How }] \, \text{is John } [\text{AP} \, \text{t}_2 \, \text{sane }] ? \]

c. \[\text{AP} \, [\text{XP} \, \text{Ganz schön } \text{neugierig }] \, \text{ist Maria } t_1 \]

d. \[*[\text{XP} \, \text{Ganz schön } \text{neugierig }] \, \text{ist Maria } [\text{AP} \, \text{t}_2 \, \text{neugierig }] \]

(61) **Generalized Left Branch Condition effects, TP (‘that-trace effect’):**

a. \[\text{DP} \, \text{What }] \, \text{do you think } [\text{CP } \text{that John bought } t_1] ? \]

b. \[[\text{DP} \, \text{What }] \, \text{do you think } [\text{CP } \text{Ø John bought } t_1] ? \]

c. \[*[\text{DP} \, \text{Who }] \, \text{do you think } [\text{CP } \text{that } [\text{TP } t_1 \, \text{arrived }]] ? \]

d. \[[\text{DP} \, \text{Who }] \, \text{do you think } [\text{CP } \text{Ø } [\text{TP } t_1 \, \text{arrived }]] ? \]

Note:
The *that-trace configuration in (61-c) can be excluded; but unfortunately, the Generalized Left Branch Condition also excludes (61-d), which is well formed. Gazdar’s solution: Movement from an embedded CP is only apparent here; the external argument who of arrived is in fact merged in the matrix VP domain. Furthermore, the analysis is incompatible with the idea that external arguments are merged in SpecV and move to SpecT.

(62) **Generalized Left Branch Condition effects, VP (problem):**

a. \[[\text{CP } [\text{C } \text{Ø }] \, [\text{TP } [\text{DP} \, \text{John }] \, [\text{T } \text{Ø }] \, [\text{VP } t_1 \, \text{likes Mary }]]]] \]

b. \[[\text{CP } [\text{DP} \, \text{Who }] \, [\text{C } \text{Ø }] \, [\text{TP } t_1] \, [\text{T } \text{Ø }] \, [\text{VP } t_1 \, \text{likes Mary }]]] ? \]

10. The Wh-Island Condition

(63) **Wh-Island Condition**\(^d\) (Chomsky (1973)):
Movement must not cross a CP with a *wh*-element in SpecC or C.

(64) **Wh-Island Condition**\(^r\) (representational version):
\[
*... \, \alpha_1 \, ... \, [\text{CP } \beta_2 \, ... \, t_1 \, ...] \, ... , \text{where } \beta \text{ is a *wh*-element in SpecC or C.}
\]

(65) **A consequence of the Wh-Island Condition:**

...
11. The Superiority Condition

a. How do you think [CP that Mary solved the problem t₁]?
b. *How do you wonder [CP whether Mary solved the problem t₁]?
c. [DP₁ Which book] do you think [CP that John read t₁]?
d. *[DP₁ Which book] do you wonder [CP [PP₂ to whom] John gave t₁ t₂]?

Note:
Wh-Island effects are typically not that strong if the wh-clause is an infinitive and the moved item is a complement DP.

(66) Weak Wh-Island Condition effects:

??[DP₁ Which book] don’t you know [CP whether to read t₁]?

Note:
A similar effect arises with topicalization to SpecC. Accordingly, a Topic Island Condition has been suggested, and further generalization seems possible.

(67) Topic Island effects:

a. [DP₁ This book] Mary thinks that [PP₂ to John]
b. *[DP₁ This book] Mary thinks that [PP₂ to John] Bill gave t₁ t₂
c. *(DP₁ Wen] denkt du [CP dass Maria t₁ mag]
whom think you that Maria likes
d. *[DP₁ Wen] denkt du [CP Maria₂ mag₃ t₂ t₃]
whom think you Maria likes

11. The Superiority Condition

(68) Superiority Condition (Chomsky (1973)):

In a structure α[F₁]... [... β[F₂] ... [... γ[F₃] ...] ...] ... movement to [*F₈] can only affect the category bearing the [F] feature that is closer to [*F₈].

Note:
The only difference to the (revised) A-over-A Principle (i.e., the F-over-F Principle) is that β c-commands γ in the Superiority Condition, whereas β dominates γ in the F-over-F Principle.

(69) Superiority Condition (representational version):

*[... γ[F₃]... [... β[F₂] ... [... t₇ ...] ...] ...] ... if the head of which γ is the specifier bears a [*F₈] feature in the LA.

(70) A consequence of the Superiority Condition:

a. Who₁ t₁ saw what₂?
b. *What₂ did who₁ see t₂?
c. I wonder [CP who₁ t₁ bought what₂]
d. *I wonder [CP what₂ who₁ bought t₂]
12. The Clause Non-final Incomplete Constituent Constraint

(71) Clause Non-final Incomplete Constituent Constraintd (Kuno (1973)):

It is not possible to move any element of a category α ($\alpha = \text{DP or CP}$) in a clause non-final position out of α if what is left over in α constitutes an incomplete α.

(72) Incompleteness:

A DP/CP α is incomplete if an obligatory element is missing.

(An obligatory element may, as a first approximation, be an element that is obligatorily selected.)

Origin:

Kuno suggests the Clause Non-final Incomplete Constituent Constraint as a more general version of the Sentential Subject Constraint, which it is therefore supposed to replace.

(73) A consequence of the Clause Non-final Incomplete Constituent Constraint, object DPs:

a. $\text{[DP}_1 \text{ Which man] did you buy [DP a picture of t}_1 \text{] ? (see (26-b))}$

b. $\text{[PP}_2 \text{ Of which man] did John give [DP a picture t}_2 \text{] to Bill ?}$

c. $\ast\text{[DP}_1 \text{ Which man] did John give [DP a picture of t}_1 \text{] to Bill ?}$

Note:

In (73-a), the DP is clause-final; in (73-b), the DP counts as complete (recall that arguments of N are optional). Only in (73-c) are both requirements violated: The DP from which movement takes place is in a non-final position, and if movement occurs, it counts as incomplete (of has an obligatory $\ast\text{D}$ feature).

(74) A consequence of the Clause Non-final Incomplete Constituent Constraint, subject DPs:

a. $\text{[DP}_1 \text{ Which cars] did the explosion damage [DP the hoods of t}_1 \text{] ?}$

b. $\text{[PP}_2 \text{ Of which cars] were [DP the hoods t}_2 \text{] damaged by the explosion ?}$

c. $\ast\text{[DP}_1 \text{ Which cars] were [DP the hoods of t}_1 \text{] damaged by the explosion ?}$

Note:

(74-b) is expected to be ungrammatical under the Subject Condition. However, it has been suggested that these kinds of PPs may in fact be merged outside the subject DP (see Cinque (1990)), in which case the Subject Condition would be compatible with (74-b) (and the Clause Non-final Incomplete Constituent Constraint would be vacuously fulfilled here).

(75) A consequence of the Clause Non-final Incomplete Constituent Constraint, CPs (see (37)):

a. $\text{[DP}_1 \text{ Who] did the reporters expect [CP that the principal would fire t}_1 \text{] ?}$

b. $\text{[DP}_1 \text{ Who] was it expected by the reporters [CP that the principal would fire t}_1 \text{] ?}$

c. $\ast\text{[DP}_1 \text{ Who] was [CP that the principal would fire t}_1 \text{] expected by the reporters ?}$
The Clause Non-final Incomplete Constituent Constraint can be reformulated as a representational constraint on outputs.

(76) **Clause Non-final Incomplete Constituent Constraint** (representational version):

\[\ldots \alpha_1 \ldots [\beta \ldots t_1 \ldots] \ldots \text{if (a)–(c) hold:} \]

a. \(\beta = \text{DP or CP.} \)
b. \(\beta \) is in a clause non-final position.
c. \(\beta \) is incomplete.

(77) **An apparent problem:**

[DP₁ Who] does John think [CP₂ Mary has persuaded t₁ [CP₃ that Bill is a spy]]?

Note:

(77) does not violate the Clause Non-final Incomplete Constituent Constraint because the only CP from which movement takes place is CP₂; and CP₂ is incomplete after the movement operation, but it is in a clause-final position.

(78) **A real problem?**

a. [DP₁ Which man] did you buy [DP a picture of t₁] from Mary?
b. [DP₁ Which tree] did you see [DP the leaves of t₁] in the yard?

Note:

Kuno assumes that (78-ab) are well-formed, and he takes this to follow from the Clause Non-final Incomplete Constituent Constraint. The idea is that what is problematic about the starred data is “the fact that the incomplete ... phrases are followed by nonoptional elements [...] In [(78-ab)], ... incomplete ... phrases appear either clause-finally or, if not, are followed only by optional elements in the sentences.” But does this follow from the constraint?

13. **The Post-Sentential Subject Extraction Constraint**

(79) **Post-Sentential Subject Extraction Constraint**

\(d \) (Zaenen & Pinkham (1976)):

It is impossible to move a DP across a sentential subject.

Note:

Unlike the Clause Non-final Incomplete Constituent Constraint, this constraint is supposed to complement (rather than replace) the Sentential Subject Constraint.

(80) **A consequence for wh-movement:**

a. [DP₁ Who] do you think [CP₁ that [DP₂ Bill’s resignation] would surprise t₁]?
b. *[DP₁ Who] do you think [CP₁ that [CP₂ for Bill to resign] would surprise t₁]?

(81) **A consequence for topicalization:**

a. [DP₁ John] [DP₂ Bill’s resignation] would not surprise t₁
b. *[DP₁ John] [CP₂ for Bill to resign] would not surprise t₁
14. Conclusion

(82) **Post-Sentential Subject Extraction Constraint** (representational version):

\[\ldots \alpha_1 \ldots [\ldots \beta \ldots [\ldots \text{t}_1 \ldots] \ldots] \] if \(\beta \) is a sentential subject.

A generalization?

(i) **Sentential Subject Constraint:**

All sentential subjects are islands.

(ii) **Post-Sentential Subject Extraction Constraint:**

The domain to the right of a sentential subject is an island.

\[\rightarrow\]

(iii) **Most general constraint:**

All sentences with sentential subjects are islands.

Problem:

Sentential subjects themselves can be moved.

(83) **Movement of sentential subjects:**

That John would be late, Mary didn’t think was very likely.

14. Conclusion

The problem with most of the constraints discussed so far is the lack of generality; these constraints often look construction-specific. Should syntactic constraints be permitted to mention specific categorial features, or specific selectional features? Ideally, the answer is no. Still, some of the constraints are not subject to this critique. Most notably, this holds for the the A-over-A principle (in particular, its F-over-F revision) and for the Superiority Condition. It therefore does not come as a surprise that the combination of these two conditions is widely considered valid nowadays. (The combined constraint is known as the **Minimal Link Condition**; more on this constraint is to come later.)

(84) **F-over-F Principle** (Chomsky (1973)):

In a structure \(\alpha_{[sF\ldots]} [\beta_{[F]} \ldots [\gamma_{[F]} \ldots] \ldots] \ldots \), movement to \([*F*]\) can only affect the category bearing the \([F]\) feature that is closer to \([*F*]\).

(85) **Superiority Condition** (Chomsky (1973)):

In a structure \(\alpha_{[sF\ldots]} [\ldots \beta_{[F]} \ldots [\ldots \gamma_{[F]} \ldots] \ldots] \ldots \), movement to \([*F*]\) can only affect the category bearing the \([F]\) feature that is closer to \([*F*]\).

Note:

The constraints discussed here (in [2]) are all local (derivational or representational). Is it possible to reformulate constraints like, e.g., the F-over-F Principle and the Superiority Condition as, e.g., transderivational constraints? Indeed, there is a straightforward reformulation, even though it is not fully equivalent.
(86) *Shortest Paths Condition* (Chomsky (1993)):
Minimize the length of movement paths.
(Given the set of derivations RS that are based on the same LA, choose the derivation in RS in which movement paths have minimal length.)

(87) *Movement path* (informal):
A movement path is the set of nodes that are crossed by movement operation. A movement path α is shorter than a movement path β if α has fewer nodes than β.
15. Exercises

Exercise 3:
Consider the following examples. They are all ungrammatical because they violate some constraint. Which example violates which constraint(s)?

(88) a. *What did Bill buy potatoes and t1 ?
 b. *How do you believe the stories [CP that John fixed your car t1] ?
 c. *The proof that the claim t1 was made by the Greeks was given in 1492 [CP that the world was round]
 d. *[DP Which rock star] were admirers of t1 arrested ?

Exercise 4:
(89) looks like a violation of the Wh-Island Condition. Do the derivational and representational versions of the constraint in (63) and (64) on page 41 make identical predictions? Is there another constraint that also excludes (89)?

(89) *[DP Who] do you wonder [CP [DP which picture of t1] John likes t2] ?

Exercise 5:
The following grammatical sentences from French, German, and English are all potentially problematic for the system of constraints developed so far because they all appear to violate some constraint. Which constraints are violated by these examples, and why are they violated?

(90) a. Combien as-tu lu de livres ?
 how many have you read of books
 b. Was hat gelesen zu haben den Fritz geärgert ?
 what has read to have the Fritz annoyed
 c. Whose books did which students read ?
 d. Was hat sie wem zu lesen empfohlen ?
 what has she whom to read recommended
 e.(?)This is a man to whom liberty we could never grant

Exercise 6:
Consider the following two sentences. Both are completely ungrammatical. As we have seen, (91-a) can be excluded by the Complex NP Constraint. What about (91-b), where DP2 has been topicalized? Discuss the derivational and representational versions of the Complex NP Constraint. Is there another constraint that (91-b) violates?

(91) a. *I wonder [CP [DP which book] John met [DP2 a child who read t1]
Exercise 7:
All wh-phrases must move to a clause-initial position in multiple wh-questions in Bulgarian (see Rudin (1988), Richards (1997), Bošković (2002)). Let us assume that all instances of such multiple wh-movement target SpecC[+wh]. (This would seem to imply that C[+wh] can have more than one [*Q*] feature in Bulgarian.) Interestingly, the order of [Q]-marked DP arguments in SpecC[+wh] positions must be identical to the base order of the DP arguments within VP; see (1-a) vs. (1-b). In simple wh-questions, the VP-internal order can be reversed by wh-movement; see (1-c) (where V has undergone LI-movement to C, which is irrelevant in the present context).

(1) *Multiple and simple wh-movement in Bulgarian:*
 a. [CP Koj1 [C’ kogo2 [C’ C[+wh] [TP t1 T [VP t1 običa t2]]]]] ?
 who
 b. *[CP Kogo2 [C’ koj1 [C’ C[+wh] [TP t1 T [VP t1 običa t2]]]] ?
 whom
 c. [CP Kakvo2 [C’ [C[+wh] pravi3]] [TP Ivan1 T [VP t1 t3 t2]] ?
 what

 Questions:
 (i) The phenomenon in (1-ab) is reminiscent of Superiority Condition effects in English. Does it follow from the Superiority Condition?
 (ii) One might account for the difference between (1-a) and (1-b) by the constraint in (2). What kind of constraint is this (Cond, Conr, Conq, or Contl)?
 (iii) Would (2) also account for Superiority Condition effects in English?
 (iv) Would (2) be compatible with (1-c)?
 (v) Try to reformulate (2) without mentioning the levels “D-structure” and “S-structure”, by exclusively referring to syntactic categories.
 (vi) Why is (2) not really a “good” constraint?

 (2) *[Q]-Isomorphism:*
 If \(\alpha\)\textsubscript{[Q]} c-commands \(\beta\)\textsubscript{[Q]} at D-structure, \(\alpha\)\textsubscript{[Q]} also c-commands \(\beta\)\textsubscript{[Q]} at S-structure.

Exercise 8:
Languages like Italian exhibit so-called pro-drop constructions: A subject pronoun that is interpreted as a topic cannot be overtly realized. Suppose that there is a non-overt pronominal empty category pro in these contexts. Furthermore, a subject pronoun that is not a topic must be overtly realized, and cannot be pro. Account for this generalization by invoking two constraints; one of them should be transderivational/translocal.

(3) *Pro-drop in Italian:*
 a. [TP pro\textsubscript{top} Ha cantato]
 b. *[TP Lui\textsubscript{top} ha cantato]