Long-distance vowel-consonant agreement in Harari

Sampson Korsah (sampson.korsah@uni-leipzig.de)

University of Leipzig
Segmental phonology of Ethiopian Semitic languages
6th November, 2014

1 Introduction

Consider the phonological interactions between consonants and vowels (1).
(1) Canadian French
a. $\quad / \underline{\mathrm{ty}} / \rightarrow\left[\mathbf{t}^{\mathbf{s}} \mathbf{y}\right] \quad{ }^{\prime} \mathrm{you}(\mathrm{sg})^{\prime}$
b. $\quad /$ tony $/ \rightarrow$ tony $] /{ }^{*}\left[\mathbf{t}^{\text {s}}\right.$ əny $] \quad$ 'held'

- (1-a) $/ t /$ is affricated
- (1-b) /t/ is NOT affricated
- Assimilation tends to be LOCAL in many languages. i.e. it usually happens between adjacent segments.
- If affrication of /t/ in (1-b) had been possible, it could have been an instance of LONG-DISTANCE... such as (2).
(2) Applecross Scottish Gaelic
$/$ mãhar/ \rightarrow [mãñh̃ãr̃] 'you(sg)'
- Nasalization on stressed /a/ spreads to ALL following segments.
- Unlike (2), there are instances where there may be what looks like featurespreading but intervening/intermediate segments seem to remain unaffected or remain neutral. This is what obtains in Harari palatalization e.g.(3).
(3) Harari (NOTE: 2SG.MASC \rightarrow 2SG.FEM)
a. $/$ libas $/ \rightarrow[$ liba $\mathbf{j}]$ 'dress'
b. $\quad / k i \underline{t} a b / \rightarrow\left[\right.$ kit \int abi $] ~ ' w r i t e ' ~$
c. / sibər/ \rightarrow [$\mathbf{i b} \mathbf{i b r i}]$ 'break'
- /t/ in (3-b) and /s/ in (3-c) seem to have been impacted by the features of the suffix -i.
- This -i (=2SG.FEM) triggering palatalization affects CORONALS except /r/.
- Note that in (3), /t/ is 2 segments away and /s/ is 4 segments away.
- (1), (2) and (3-a) have been analysed as feature spreading by means of locality.
- Phenomena like (3-b-c) have also been analyzed by some scholars as CONSONANT HARMONY (through feature spreading). The intervening segments are claimed to covertly acquire the spreading feature.
- But Rose's (2004) proposal is that, (3) is an instance of CONSONANT FEATURE AGREEMENT (not Feature Spreading).

Goal: To discuss the evidence for Rose's argument and how she derives the various paradigms.

2 The data

(4) The following are the coronal segments which undergo palatalization $/ \mathrm{t}$ t's z d n l/ \rightarrow [tf t $\left.\mathbf{J}^{\prime} \int \mathbf{3} \mathbf{d} \mathbf{3} \mathbf{j} \mathbf{j}\right]$

- Non-coronal consonants are exempt.
- Only -i [2SG.FEM] triggers palatalization. Epenthetic and lexical front [i] do not trigger palatalization (5).
(5) a. [-i] in 2SG.MASC in Simple imperfect tisabrí 'you[2.MASC] break'
b. [-i] in question affix -in- in ji-sadb-in-al 'does he insult?
- Palatalization may affect different segments in different positions within a string of segments.
(6) Final position
a. /zimad/ \rightarrow [zimad3-i] 'drag!'
b. /difan/ \rightarrow [difan-i] 'block container!'
c. /kifal/ \rightarrow [kifaj] 'pay!'
- Note that though a l-i string is generally fine, (6-c) does not show $[\mathbf{j}-\mathbf{i}]$ sequence due to some other constraint.
(7) Non-final position
a. /nisa?/ \rightarrow [nifii $]$ 'take(away)!'
b. /hinak'/ \rightarrow [hinak'-i] 'strangle!'
c. /sixar/ \rightarrow [$\mathbf{i x} \mathbf{x a r - i]}$ 'be drunk!'
- (7-a-b) - Penult consonants; (7-c) - Initial consonant.

2.1 Obstruents and Sonorants Palatalization

- If there are two palatalizable coronals, the OBSRUENT will be palatalized in addition to a rightmost coronal SONORANT i.e. /n/ or /l/ (8-a).
- If the first consonant is an obstruent and the medial or final consonant is a sonorant, either both sonorant and the obstruent will be palatalized, or for some speakers, only the sonorant will (8-b).
- If the coronals occur in a Sonorant-Obstruent order, only the obstruent will readily palatize ($8-\mathrm{c}$).
(8)
a. $/$ xidan/ \rightarrow [xidzan-i] or (xidan-i) 'cover!'
b. /a-dagni \rightarrow [a-dagn'-i] or (a-dzagn-i) 'hit!'
c. /dinabt'i/ \rightarrow [dinatfi] /*dinatf-i 'be frightened'
- BUT sonorants at initial position do not palatalize even when followed by palatalizable obstruents.
(9) /nik'ah/ \rightarrow [nik'ahi] 'be awake!'
- Consontants in reduplicated roots may also be affected by palatalization.
(10) Reduplicated forms
a. $\quad C_{1} C_{2} C_{2} /$ sidad $/ \rightarrow[\operatorname{sid} \mathbf{3} \mathbf{a d} \mathbf{3} \mathbf{- i}]$ 'chase away!'
b. $\quad C_{1} C_{2} C_{1} C_{2} /$ lik'alk'i/ \rightarrow [lik'ajk'-i] 'paint!'
c. $\quad C_{1} C_{2} C_{2} C_{3} /$ kitatfi/ \rightarrow [kitfatffi] 'harsh again and again!'
- If there is no consonant in the verb root which can be palatalized, only -i can tell the difference between 1SG.MASC and 1SG.FEM.
/birar/ \rightarrow [birar-i] 'fly!'
- 1SG.FEM. suffix may also cause some prefixes to be palatalized e.g. imperfective ti- (12-a), and negative imperative a-t- (12-b). (Note: Final /-i/ in 2SG.MASC in (12-a) is epenthetic.
(12) a. \quad tii-sagdi/ \rightarrow [kisagd3-i] or $\left[\mathbf{t} \int \mathbf{i s a g d} 3 \mathbf{- i}\right]$ 'you prostrate'
b. /a-t-widak'/ \rightarrow [a-tf-idzak'i] 'don't fall'
- Palatalization of prefixes is more common when there is no palatalizable consonant in the root $(13-\mathrm{a})$ or if the only coronal in the root is a sonorant $(13-\mathrm{b})$.
a. /ti-barri/ \rightarrow [tfi-barri] 'you fly'
b. /a-t-hinak'i \rightarrow [a-t \int-hinak'i] 'don't strangle'

2.2 Summary of Harari palatalization data

1. Only coronals (except $/ \mathrm{r} /$) are palatalized.
2. Obstruents are preferred targets.
3. Sonorants i.e. $/ \mathrm{n} /$ and $/ \mathrm{l} /$ are palatized only when a preceding obstruent is palatalized or if there is no coronal obstruent in root/stem.

2.3 Research questions

1. What is the trigger for the palatalization patterns observed so far, is it the suffix -i or the morphological features of 2SG.FEM?
2. Why are coronal obstruents preferred over sonorant ones?
3. Is double palatalization triggered by the rightward palatalized segment or by $\mathbf{- i}$?

3 Main arguments against Local/Spreading analyses

- Potential triggers are skipped
- There seem to be no blocking effect
- Even when "Target" notion is abandoned for the Allignment of spreading feature within a domain edge, Harari defies this by favouring palatalization of coronal obstruent over coronal sonorants.
- The Harari phenomenon has a lot in common with Consonant Agreement/Harmony elsewhere which have been analyzed as FEATURAL AGREEMENT not Feature Spreading.

4 Previous analyses

4.1 Palatalization as grammatically conditioned

- Main source of distinction between 2SG.MASC and 2SG.FEM

```
/tikafti/ }->\mathrm{ [tikaftSi] 'you open'
```

- But note that final /-i/ in (14) is epenthentic, to avoid consonant cluster.
- In some instances, /-i/ triggered palatalization does not imply 2SG.FEM. Thus it not just palatalization but also suffixation of /-i/ that distinguish the two genders.

4.2 Palatalization as feature spreading

4.2.1 Non-blocking of feature spread

- If feature-speading proceed locally, only adjacent segments are expected to be palatalized.
- There is supposed to be blocking effects by either feature-(in/)compatible segments.
- But $/ \mathrm{S} /$ does not block further spreading of [-back] from /-i/ to /t/ in (15).
a. /a-tbiJak'i/ \rightarrow [a-t \mathbf{t}-bifak'i] 'don't wet!'
b. /a-tbifak'i/ \rightarrow *[a-t-bifak'i] 'don't wet!'
- Even if it is rather a case of Consonant Harmony i.e. a [-ANT] feature that is spreading, still / $\mathbb{J} /$ should block a further spread.
- Also, it seems some segments e.g. /l/ in (16), may be skipped.
$/$ a-silab/ \rightarrow [jilabi$]$ or [[jijabi] 'castrate!'
- There is opacity in (16) and (15); it is not obvious how intervening segments are skipped or why they do not block the spreading.

4.2.2 Preference of Obstruents over Sonorants

- Recall the interesting cases of double palatalization with $\mathrm{OBSTR}_{\text {PAL }}>\mathrm{SON}_{\text {PAL }}$ but SON>OBSTR ${ }_{\text {PAL }}$
a. $/$ fitan $/ \rightarrow\left[\right.$ fit $\left.\int^{\prime} \mathrm{n}-\mathrm{i}\right]$ 'hurry!'
b. /dinabt'i/ \rightarrow [dinabt5'-i] 'be frightened!'
- In a rule-based account, palatalization of the obstruent should take place first.

UR	/dinabt'-i/	/fit'an-i/
Rule1-OBST	dinabt5'-i	fitf'an-i
Rule2-SON	BLOCK	fitf'an-i
SR	dinabtf'-i	fitf'an-i

- According to (18), / $\mathrm{t} /$ / must block spreading to /n/ but the data suggests otherwise; palato-alveolar consonants do not block spreading.
－An OT－account may equally predict the wrong winner（19）．
－Constraints：
ALIGN［－BACK］：Align［－back］to right edge of stem
${ }_{\mathrm{n}}^{\mathrm{n}}$ ：Do not palatalize coronal sonorants
IDENT－IO］：Do not alter any segment
（19）

／fit＇an－i／	ALIGN［－BACK］	Ident－IO	${ }^{\text {n }}$
${ }^{\text {1a }}$ a a．fit＇an－i		＊	＊
b．fit ${ }^{\prime}$＇an－i	！＊	＊！	
c．fitf＇an－i		！＊＊	＊

5 Alternative analysis

5．1 Palatalization as consonant agreement

－Harari palatalization is comparable to other cases of consonant harmony（AGREEMENT） but not through feature spreading．
－CONSONANT AGREEMENT：Two or more consonants in a word share phono－ logical features．
－Two main characteristics that set this kind of long－distance phonological interac－ tion apart from others are：

Only a small set of consonants are involved（in this case only CORONALS）
Intervening segments remain neutrral．
－Phonological interaction suggests a tighter bond the stem of the word and the affix that triggers the palatalization．
－Constraints：
ヨSA－IDENT（Stem－Affix identity）：
Let x be an affix and y be a stem to which x attaches．If segment α in x is $[+\mathrm{F}]$ ， then there is some segment β in y which in the input is $[-\mathrm{F}]$ but will have a $[+\mathrm{F}]$ output．

Only requires consonants and－i to match in terms［＋PAL］
Thus：Let x be an affix and y be a stem to which x attaches．If there is a vowel α in x is $[+\mathrm{PAL}]$ ，then there is consonant β in y which in the input is ［－PAL］but will have a［＋PAL］output．

ヨSAICO：
Let x be an affix and y be a stem to which x attaches．If segment α in x is ［ +PAL ］，then there is some coronal obstruent β in y which in the input is［－PAL］ but will have a $[+\mathrm{PAL}]$ output．

PROXIMITY ：Correspondent segments can be separated by no more than one segment of a different major class（C／V）

IDENT－IO ：Corrensponding segments in input and output must be identical with respect to feature［PAL］
－CONTRAIINT RANKING：
ヨSA－IDENT＞＞ヨSAICO＞＞PROXIMITY＞＞IDENT－IO

5.2 Accounting for the data

(20) a. /fitan/ \rightarrow [fitf'fn-i] 'hurry!' (See (21))
b. /dinabt'i/ \rightarrow [dinabtf'-i] 'be frightened!' (See (22))

/fit'an-i/	JSA-IDENT	$\exists \mathrm{SAICO}$	PROXIMITY	IDENT-IO
a. fit'ani	*!	*		
b. fitf'ani		*!	**!	*
c. fit'ani		*!		*
嗗 d. fitJ'ani			*	**

(22)

/dinabt'-i/	JSA-IDENT	ヨSAICO	PROXIMITY	IDENT-IO
a. dinabt'i	*!	*		
b. dinabt ' i		*!	**	*
c. dijabft 'i		**!		**
				*

6 Conclusion

- The non-local nature of long-distance palatalization in Harari is better accounted for by assuming constraints which require agreement between the triggers and targets of the process.
- This approach also adequately addresses the problem of double palatalization (of obstruents and sonorants) which is a problem for feature-spreading analyses.

References

Rose, Sharon (2004). Long-distance vowel-consonant agreement in Harari . Journal of African languages and linguistics 25(1), 41-87.

