Climate Dynamics
Summer Semester 2019

UNIVERSITÄT LEIPZIG

Homework 2
Due 24 April 2019

Problem 1 Incoming solar radiative flux

Given a solar surface temperature of approximately 5800 K , solar radius $7.0 \times 10^{5} \mathrm{~km}$, and mean solar distance of $150 \times 10^{6} \mathrm{~km}$, calculate the global-mean incoming solar radiative flux at the top of the Earth's atmosphere (TOA).

Problem 2 Radiative equilibrium

Approximate the atmosphere as n black-body layers in radiative equilibrium with each other. (The black-body approximation is going to be increasingly invalid as n increases, but let's see what happens anyway.) The atmosphere is also in radiative equilibrium with a planetary surface of albedo α and TOA solar radiation $S_{0} / 4$. Show that the surface temperature T_{S} is related to the emission temperature T_{e} by the relationship

$$
\begin{equation*}
T_{s}=\sqrt[4]{n+1} T_{e} \tag{1}
\end{equation*}
$$

Is radiative equilibrium a good model for the Earth's atmosphere?
Hint: Write the system of $n+1$ equations for the $n+1$ temperatures as a matrix equation. You will see that the matrix type is "tridiagonal". Tridiagonal matrices are relatively straightforward to invert using the Thomas algorithm.

Problem 3 Atmospheric energy budget

In our climate model with a one-layer atmosphere, does the atmosphere experience a net gain or net loss of energy by radiation? What about the real atmosphere?

Problem 4 Stefan-Boltzmann law (optional, for people who like integrals)

Planck's law gives the spectral irradiance from a black body as a function of temperature:

$$
\begin{equation*}
B_{\lambda}(T) d \lambda=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{\exp \left(h c / \lambda k_{B} T\right)-1} d \lambda \tag{2}
\end{equation*}
$$

Consider an infinite plane black body representing the planetary surface, a layer of the atmosphere, or a layer of cloud.

UNIVERSITAT LEIPZIG

(a) Integrate (2) over a hemisphere to derive the Stefan-Boltzmann law,

$$
\begin{equation*}
R=\int_{0}^{\infty} d \lambda \int_{0}^{2 \pi} d \phi \int_{0}^{\pi / 2} B_{\lambda}(T) \cos \theta \sin \theta d \theta=\sigma T^{4} \tag{3}
\end{equation*}
$$

(b) Express σ (the Stefan-Boltzmann constant) in terms of the fundamental constants k_{B}, c, and h.
(c) Based on equation (3), what should the size ratio between the two black body curves on p. 5 of the Lecture 2 slides be?

Note 1: You may find it helpful to transform to frequency space.
Note 2: The following integral may be of use:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{3}}{\exp (x)-1} d x=\frac{\pi^{4}}{15} \tag{4}
\end{equation*}
$$

Problem 5 Wien's law (optional, for people who like derivatives)

Show that the spectral radiance $B_{\lambda}(T)$ peaks at a wavelength proportional to the inverse of the temperature. Find the peak wavelength of a black body at 6000 K and a black body at 255 K.

