Successive Cyclicity, Long-Distance Superiority, and Local Optimization

Fabian Heck and Gereon Müller
University of Stuttgart and University of Tübingen

1. Introduction

It is not a priori clear how intermediate steps of successive-cyclic wh-movement can comply with (1), which requires movement to be feature-driven (Chomsky 1995).

(1) \textsc{Last Resort (LR)}: Movement must result in feature checking.

A standard solution is the assumption that movement to intermediate SpecC[−wh] positions is triggered by pseudo-wh-features which are either optionally present on C[−wh] (Fanselow and Mahajan 2000, Collins 1997, and others), or which can optionally be inserted at the left edge of phases (Chomsky 1998). In this paper, we will argue for a different kind of approach: Whereas the last step of successive-cyclic wh-movement is triggered by a [+wh]-feature on C, an intermediate step is not feature-driven; rather, it is a repair operation that violates \textsc{Last Resort} in order to satisfy another constraint that we will call \textsc{Phase Balance}. This presupposes constraint violability and constraint ranking, and thus suggests an optimality-theoretic approach: A ‘repair’ is a competition in which the optimal candidate incurs an (otherwise fatal) violation of a high-ranked constraint Ci in order to respect an even higher-ranked constraint Cj. More specifically, we argue that successive-cyclic wh-movement lends further support to the approach to repair-driven movement in Heck and Müller (2000) and Müller (2000), where evidence for an optimality-theoretic treatment of repair-driven scrambling, sluicing, quantifier raising, and remnant movement is presented. This approach presupposes that optimization proceeds locally, not globally (as is standardly assumed; cf. Prince and Smolensky 1993). The evidence from successive-cyclic wh-movement reinforces this position: An ‘offending’ property is removed instantaneously, not at some earlier or later stage in the derivation. Furthermore, we show that the repair approach to successive cyclicity offers an account of

* We would like to thank Daniel Büring, Sandra Chung, Gisbert Fanselow, Jane Grimshaw, Wolfgang Sternefeld, and Bruce Tesar for helpful comments. Work on this paper was supported by DFG grants MU 1444/1-1,2-1.

both long-distance superiority effects in German, and certain long-distance intervention effects that seem to have gone unnoticed so far.

1.1. Local vs. Global Optimization

Global (standard) optimization applies once to complete structures. Local optimization, however, applies iteratively to small portions of structure. On this view, syntactic structure is created derivationally, with each XP a cyclic node, as in Chomsky (1995). Structure building operations obey an inviolable **Strict Cycle Condition** (Chomsky 1973, Perlmutter and Soames 1979), a version of which is given in (2):

\[(2) \text{ **Strict Cycle Condition (SCC):**}^{3}\]

Within the current cyclic domain D, Merge/Move may not target a position that is included within another cyclic domain D', such that D properly includes D'.

Based on a given input, the operations Merge and Move create various XP outputs $\alpha_1, \ldots, \alpha_n$: the candidate set M. M is then subjected to an optimization procedure. The optimal output α_i (a subderivation) is the one that respects all inviolable constraints (e.g., the SCC), and that also best satisfies an ordered set of violable constraints. α_i then serves as the input for the next cycle, and so on, until the numeration is empty and the sentence complete.

As a consequence, structure that has not yet been created at a given point of the derivation cannot have any impact on the current optimization procedure: Local optimization does not have look-ahead capacity.

1.2. The Problem

There is evidence from a variety of languages that long-distance wh-movement across a CP applies successive-cyclically, by an intermediate movement step to SpecC.\[wh\].\(^2\) An example from German is given in (3).

\[(3) \quad [\text{CP}_5 \text{Wen}_1 \text{hat er gesagt [CP}_3 \text{t}_1 \text{daß Maria t}_1 \text{liebt]}]?) \quad \text{whom has he said that Maria loves} \]

The derivation underlying (3) must be D_1, not D_2 or D_3.

1. For derivations of the SCC, see Chomsky (1995), Boskovic and Lasnik (1999).
2. Morphological or syntactic reflexes of this movement step include the choice of complementizer in Modern Irish (McCloskey 1979), \textit{wh}-agreement in Chamorro (Chung 1982), partial \textit{wh}-movement in Ancash Quechua (Cole 1982) and Iraqi Arabic (Wahba 1992), obligatory V-to-C raising with (certain types of) \textit{wh}-phrases in Spanish (Torrego 1984) and Basque (Ortiz de Urbina 1989), the selection of subject pronouns by C in Ewe (Collins 1994), tonal downstep in Kikuyu (Clements, McClocksey, Maling, and Zaenen 1983), \textit{meN} deletion in colloquial Singapore Malay (Cole and Hermon 2000), \textit{wh}-copying in German (Fanselow and Mahajan 2000) and Africaans (Plessis 1977), and obligatory CP extraposition in German (M{"u}ller 1999).
Cyclic Derivation D_1

a. $[TP$ Maria wen$_1$ liebt $] + C_5[\text{wh}]$, (wen_1 moves to SpecC_5) \rightarrow

b. $[CP_5$ wen$_1$ daß Maria t$_1$ liebt $]$ \rightarrow

c. $[TP$ er gesagt hat $[CP_5$ wen$_1$ daß Maria t$_1$ liebt $] + C_7[\text{wh}]$, (wen_1 moves to Spec$C_7; V/2$) \rightarrow

d. $[CP_7$ Wen$_1$ hat er gesagt $[CP_5$ t$_1'$ daß Maria t$_1$ liebt $]$ \rightarrow

Acyclic Derivation D_2

a. $[TP$ Maria wen$_1$ liebt $] + C_5[\text{wh}]$, (wen_1 does not move) \rightarrow

b. $[CP_5$ – daß Maria wen$_1$ liebt $]$ \rightarrow

c. $[TP$ er gesagt hat $[CP_5$ – daß Maria wen$_1$ liebt $] + C_7[\text{wh}]$, (wen_1 moves to SpecC_7, via SpecC_5; V/2) \rightarrow

d. $[CP_7$ Wen$_1$ hat er gesagt $[CP_5$ t$_1'$ daß Maria t$_1$ liebt $]$ \rightarrow

One-step Derivation D_3

a. $[TP$ Maria wen$_1$ liebt $] + C_5[\text{wh}]$, (wen_1 does not move) \rightarrow

b. $[CP_5$ – daß Maria wen$_1$ liebt $]$ \rightarrow

c. $[TP$ er gesagt hat $[CP_5$ – daß Maria wen$_1$ liebt $] + C_7[\text{wh}]$, (wen_1 moves to SpecC_7; V/2) \rightarrow

d. $[CP_7$ Wen$_1$ hat er gesagt $[CP_5$ t$_1'$ daß Maria t$_1$ liebt $]$ \rightarrow

D_2 is not available since movement to SpecC_5 violates the SCC. D_3, in contrast, does without the intermediate wh-movement step. This derivation is incompatible with the evidence for successive cyclicity just cited; furthermore, it involves a non-local wh-chain of a type that (fatally) violates locality requirements (see below). D_1 respects both the SCC and locality by applying wh-movement to SpecC_5 in the step from (4-a) to (4-b). However, the trigger for wh-movement – the $[+wh]$-feature of C_7 – is not yet available at this point of the derivation. Thus, either there is a different trigger (a pseudo-wh-feature), or LR is violated by this operation. We suggest the latter. Then, the question arises as to what property of the derivational stage involving TP and $C_5[\text{wh}]$ in (4-a) forces a violation of LR by wh-movement to SpecC_5. The property cannot possibly be inherent in either TP or $C_5[\text{wh}]$. The reason is that the embedded TP and $C_5[\text{wh}]$ are identical in the multiple question in (7-a), where wh-movement to SpecC_5 is impossible (cf. (7-b)); partial wh-movement is only permitted in German if Spec$C_{[+wh]}$ is filled by a scope marker, not by another wh-phrase.

3. The same problem arises in an approach that employs pseudo-wh-features.
The crucial distinction seems to be that there is another wh-phrase that eventually checks the \([+wh]\)-feature of the matrix C in (7), whereas there is no such wh-phrase in (3). Given this state of affairs, the task is to find a way to determine whether wh-movement to SpecC\([-wh]\) does or does not apply at the derivational stage (4-a) on a local basis, without look-ahead capacity providing information about later stages of the derivation. This can be achieved by employing the concept of numeration, i.e., the array of lexical material that is used in a derivation (Chomsky 1995): At any given stage, the derivation has access to what is left in the numeration. The constraint that outranks LR and triggers successive-cyclic movement relies on information of this type.\(^4\)

2. Repair-Driven Wh-Movement

We propose that the constraint in question is (8).

\[(8) \quad \text{PHASE BALANCE (PB):} \]

\[\text{Phases must be balanced: If } P \text{ is a phase candidate, then for every feature } F \text{ in the numeration there must be a distinct potentially available checker for } F.\]

The notions phase and potentially available must be clarified. Every CP constitutes a phase in the sense of Chomsky (1998), Chomsky (1999), i.e., a special derivational unit.\(^5\) Syntactic material counts as potentially available within the current phase P if it is either part of the numeration or at the left edge (i.e., in SpecC) of P.\(^6\) Thus, PB forces material from the current phase P that is supposed to check a feature within a higher phase P\(^0\) to move to the edge of P, in violation of LR. Given that LR is violable and ranked below PB, successive-cyclic wh-movement now emerges as a repair strategy.

Before we continue, two further constraints need to be introduced. The first one is obvious: In addition to a constraint that blocks movement that is not feature-driven (LR), there must be a complementary constraint that forces

\(^4\) Isn’t this another form of look-ahead? The question is primarily terminological, since there can be little doubt that this kind of procedure is much more restricted – it utilizes a concept that has been proposed for independent reasons, and it does not have access to structural information provided by later parts of the derivation.

\(^5\) Whether or not vP is also a phase is irrelevant for present purposes; but cf. Heck and Müller (2000) for evidence against this.

\(^6\) Material that is part of a tree that has been created earlier and has not yet been used in the derivation is not included in either the numeration or the current phase. Items in these external trees belong to the work space of the derivation (also cf. the complex notion of “representation” in Frampton & Gutman 1999), just like items in the numeration; we assume that they also count as potentially available. In what follows, we understand the notion of numeration in this extended sense, as comprising all derivational material outside the current tree.
features to be checked by movement (Chomsky 1995):\(^7\)

(9) **FEATURE CONDITION (FC):**
Features must be checked by overt movement.

The second constraint may be less obvious: **FEATURE FAITHFULNESS** prohibits the deletion of features that are present in the input (Legendre, Smolensky, and Wilson 1998). In the present context, this constraint mainly serves the purpose of accounting for absolute ungrammaticality (ineffability) of certain sentences. The proposed ranking is PB, FC \(\gg\) FF \(\gg\) LR.

(10) **FEATURE FAITHFULNESS (FF):**
Features must not be deleted.

2.1. **Simple Questions**

We can now reconsider the case of successive-cyclic wh-movement in a simple question; cf. (3). The following two tableaux illustrate the optimization of the embedded and the matrix phase, respectively. Consider first \(T_1\).

\(T_1\): **Local optimization of embedded phase**

<table>
<thead>
<tr>
<th>Input: ([TP \ldots wh_1 \ldots, C_{wh}])</th>
<th>Numeration = ([C_{wh}]^{+wh} \ldots)</th>
<th>FC</th>
<th>PB</th>
<th>FF</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁: ([CP_5 \ldots C_{wh}]^{+wh} \ldots)</td>
<td>(+)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂: ([CP_5 \ldots C_{wh}]^{+wh} \ldots)</td>
<td>(+)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*O₃: ([CP_5 \ldots C_{wh}]^{+wh} \ldots)</td>
<td>(\ast)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As soon as \(CP_5\) is created by merging \(C_5\) and TP, PB becomes important. Since there is still a \([+wh]\)-feature in the numeration but no potentially available item to check it, \(CP_5\) can be balanced only by movement of the TP-internal wh-phrase to the left edge of \(CP_5\), in violation of LR; see output \(O_3\). If the \(wh\)-phrase stays in situ, as in output \(O_1\), PB is fatally violated. Deletion of the \([+wh]\)-feature of the \(wh\)-phrase as in output \(O_2\) is even worse since it violates both PB and FF without improving the output’s constraint profile. Note that an output candidate that has been eliminated cannot be continued, and can thus never serve as the basis for any further competition: Once classified as suboptimal, it will never be reconsidered. Only the optimal output of \(T_1\) serves as the input for subsequent optimization. Tableau \(T_2\) shows the last cycle of the matrix phase competition.

The optimal candidate \(O_{3:}^{8}\) moves the \(wh\)-phrase and checks the \([+wh]\)-feature of C. Again, strategies that delete some features or leave the \([+wh]\)-

\(^7\) Since we are only concerned with overt movement here, we abstract away from the issue of strength.

\(^8\) The candidates here are prefixed by 3 so as to indicate that they are all descendants of \(O_3\) in \(T_1\).
feature on C unchecked do worse. PB is satisfied vacuously since there is no further material in the numeration.

2.2. Long-Distance Superiority

Let us now turn to multiple questions. German is like English in that only one wh-phrase moves overtly; cf. (11):

(11) *Wer hat t2 getroffen?
 who has met

Given that overt wh-movement in German is triggered by a [+wh]-feature on C (not by a [+wh]-feature on wh-phrases), this follows from LR. Next, recall that in multiple questions where one wh-phrase originates in a matrix clause and another wh-phrase originates in an embedded clause, the second wh-phrase must stay in situ; cf. (7-a), which is repeated here.

(12) Wer hat t2 gesagt [CP – daß Maria liebt]?
 who has said that Maria loves

Wh-movement of the embedded wh-phrase to the embedded SpecC[-wh] position is impossible (blocked by LR) since there is another wh-phrase in the numeration that is potentially available for checking the [+wh]-feature of C. In other words: PB can be satisfied without movement. Hence, the embedded wh-phrase stays in situ; cf. T₃.

T₃: Local optimization of embedded phase

| Input: [TP ... Cₚₙₜ, Cₚₙₜ₋₁, ..., Cₚₙ₁, Cₚₙₚₚportion

The optimal output O₁ of tableau T₃ again serves as the input for subsequent cycles. Suppose now that different matrix phases based on O₁ have
been constructed. PB is not an issue then since no material is left within the numeration. But the [+wh]-feature of matrix C has to be checked. As it stands, both wh-phrases could in principle accomplish this. However, on the one hand this would reintroduce the possibility of one-step long-distance movement as in (6) in multiple questions, obviously an unwanted result. On the other hand, this prediction is not empirically correct. German exhibits a long-distance superiority effect in this context (Buering and Hartmann 1994) – only the higher wh-phrase can check the [+wh]-feature. Compare (12) with (13).

(13) *Wen _1_ hat wer _2_ gesagt [CP _5_ daß Maria _t_1 liebt]? whom has who said that Maria loves

At first sight, it looks as though this long-distance superiority effect could be derived by whatever accounts for clause-bound, standard superiority effects; e.g., the Minimal Link Condition (MLC) (Chomsky 1995). This is not an option for German, though: German does not have superiority effects with clause-bound wh-movement; cf. (14) (Haider 1983).

(14) a. Wer _2_ hat t _2_ wen _1_ getroffen ? who has whom met
 b. Wen _1_ hat wer _2_ t _1_ getroffen ? whom has who met

This strongly suggests that long-distance superiority effects are to be explained independently of the issue of clause-bound superiority effects. We will assume that long-distance superiority effects are due to the following high-ranked locality constraint (cf. Chomsky 1998):

(15) PHASE IMPENETRABILITY CONDITION (PIC):
 Move operates only on locally available items.

Syntactic material counts as locally available within the current phase P if it is contained within P or at the left edge of the last phase P'\(^9\). Since optimization of the embedded CP has filtered out the candidate that moves the lower wh-phrase to the embedded SpecC position (cf. T _3_), any movement operation applying to this wh-phrase in the matrix CP will fatally violate the PIC, and long-distance superiority is accounted for; cf. T _4_.

O _14_ (= (12)) checks the matrix [+wh]-feature with the higher wh-phrase; all constraints are respected. In contrast, O _12_ (= (13)) fatally violates the PIC. Finally, O _13_ deletes the [+wh]-feature on the C-head and on the wh-phrases,

\(^9\) This analysis builds on the proposal made in Chomsky (1998). The interaction of the PIC and PB in the present system is roughly comparable to that of the PIC and condition (24) in Chomsky’s feature-based system, with PB a strengthened form of his (24).
Local optimization of matrix phase

Input: \[[TP \text{wh}_2 \ldots \{[C_{\text{wh}_3} - C_{\text{wh}_4}] \ldots \text{wh}_1 \ldots]\}, C_{\text{wh}_3 + \text{wh}_4} \]

Numeration = \{ \ldots \}

<table>
<thead>
<tr>
<th></th>
<th>FC</th>
<th>PB</th>
<th>PIC</th>
<th>FF</th>
<th>LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{11}: $[C_{\text{wh}3} - C{\text{wh}_4}] \ldots \text{wh}_2 \ldots$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*1</td>
</tr>
<tr>
<td>O_{12}: $[C_{\text{wh}_3} \text{wh}1 C{\text{wh}_4}] \ldots \text{wh}_2 \ldots$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*1</td>
</tr>
<tr>
<td>O_{13}: $[C_{\text{wh}3} - C{\text{wh}4}] \ldots \text{wh}\ldots$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>O_{14}: $[C_{\text{wh}_3} \text{wh}2 C{\text{wh}_4}] \ldots \text{t}_2 \ldots$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

turning them into \textit{wh}-indeﬁnites; this violates FF.\(^{10}\)

2.3. Further Long-Distance Intervention Effects

This approach makes an interesting prediction: Long-distance \textit{wh}-movement should also be impossible if there is another \textit{wh}-element in the numeration (more generally, outside the current tree; cf. footnote 6) that eventually ends up in a more deeply embedded position, e.g., in an island. This prediction is indeed borne out in German. (16) illustrates a long-distance intervention effect with \textit{wh}-in situ inside an adjunct; (17) with \textit{wh}-in situ inside an NP/CP structure; and (18) with \textit{wh}-in situ inside an NP/PP configuration.

(16) a. Wen\(_1\) hat Fritz [CP nachdem er was\(_2\) gemacht hat] \text{t}_1
whom\(_{acc}\) has Fritz after he what done has
met
 b. *Wen\(_1\) hat Fritz [CP nachdem er was\(_2\) gemacht hat] gesagt
whom\(_{acc}\) has Fritz after he what done has said
 [CP (t\(_1\)) daß Maria \text{t}_1 liebt] ?
that Maria loves

(17) a. ?Wen\(_1\) hat Fritz [NP einem Mann [CP der was\(_2\) kennt]] \text{t}_1
whom\(_{acc}\) has Fritz a man\(_{dat}\) that what knows
introduced

\(^{10}\) \textit{Wh}-movement from infinitives in German does not give rise to clear superi ority effects (Fanselow 1991), modulo some minor variation between restructuring infinitives and others, and a non-identity requirement on \textit{wh}-phrases (Haider 2000). This suggests that German infinitives are not phases. Indeed, extraction from German infinitives does not trigger obligatory extraposition either; cf. footnote 2.
The well-formed (a)-examples involve clause-bound, feature-driven movement of wh.

The reason is that wh₂ moves across a barrier. This fatally violates the CED (Huang 1982, Chomsky 1986), which we assume to also outrank FF.

Thus, if O₁₄ in T₄ violates a high-ranked CED, the optimal candidate will be O₁₃, which deletes three [+wh]-features and thereby violates FF. This candidate neutralizes the wh-features of the input, and the result is (21), with indefinite readings of the two wh-phrases and a declarative matrix C head.¹¹

¹¹ This output can also be generated on the basis of an input that has indefinites and declarative C to begin with. More generally, the neutralization approach to un-
(21) Fritz hat [CP nachdem er was]_{-Wh|} gemacht hat [CP daß Maria]_{-Wh|} liebt]

On this basis, we can give an argument for local as opposed to global optimization. Since we presuppose the existence of repair-driven wh-movement, and since in a global approach all structural information is given from the very start, we would expect that in order to avoid a CED or FF violation, the lower wh₁ should check the matrix feature, which only violates LR. Then, sentences like (16-b) should be well formed after all. This wrong prediction of global optimization is shown in T₅ (★ indicates the wrong optimal output).

Recall that in the matrix competition of the local approach, candidate O₁₅ from tableau T₅ is not an option since it is based on output O₃ from tableau T₃: a candidate that has already been eliminated in the competition of the embedded phase because its LR violation is locally unmotivated.

2.4. A Potential Problem

Examples like (22) show that the approach is too restrictive as it stands.

(22) Die Frage [NP wer₁ [CP₉ was₂ mithört]] ist relevant für die Frage [CP₉ die Party t₁ wird]

grammaticality (ineffability) gives rise to derivational ambiguities that can only be filtered out by additional assumptions (cf. “input optimization” in Prince and Smolensky 1993).
CP₅ optimization raises the question of whether wie₃ moves to SpecC₅. Since the CP₅ phase turns out to be balanced without such movement (wer₁ and was₂ are potentially available for the [+wh]-features of C₉ and C₇), one would wrongly expect wie₃ to stay in situ. The problem here is that either was₂ or wer₁ "fools" wie₃: The wh-phrases do not compete for the same target position. Hence, was₂/wer₁ should not qualify as a potentially available checker for the [+wh]-feature that is supposed to be checked by wie₃. To execute this idea, let us assume that wh-features are accompanied by scope indices in the numeration. Then, XP_{++[i]} will never count as a potentially available checker for a contra-indexed feature on C_{++[j]}, due to feature mismatch.

3. Conclusion

We have argued that successive-cyclic wh-movement to SpecC_{−wh} positions should be viewed as repair- rather than feature-driven movement, in violation of LR. The analysis is developed within a new approach to syntactic optimization that is both local and derivational, and that centers around constraints related to CP phases (PB, PIC). This local approach to repair-driven wh-movement is corroborated by long-distance superiority effects as well as by certain long-distance intervention effects which are initially surprising; and it can be shown to be empirically preferable to an approach in terms of global optimization.

References

