Outward-sensitive phrasal allomorphy in Kimatuumbi

Daniel Gleim University of Leipzig

GLOW 47 Goethe-Universität Frankfurt

26th March 2025

<ロト <回ト < 注入 < 注入 = 2 = 3

- According to the cyclic principle, a process P in a smaller domain applies before a process Q in a bigger domain.
- Q must counterbleed P: P applies, even if Q destroys P's environment.
- (1) [...Q [...P...]_D...]_{D+x}

- According to the cyclic principle, a process P in a smaller domain applies before a process Q in a bigger domain.
- Q must counterbleed P: P applies, even if Q destroys P's environment.

(1) [...P...]_D

- According to the cyclic principle, a process P in a smaller domain applies before a process Q in a bigger domain.
- Q must counterbleed P: P applies, even if Q destroys P's environment.
- (1) [...Q [...P...]_D...]_{D+x}

- According to the cyclic principle, a process P in a smaller domain applies before a process Q in a bigger domain.
- Q must counterbleed P: P applies, even if Q destroys P's environment.
- (1) [...Q [...P...]_D

Cyclic frameworks

a.o. SPE (Chomsky & Halle, 1968), LMP (Kiparsky, 1982), cophonologies (Orgun, 1997), Stratal OT (e.g. Bermúdez-Otero 2012), phasal phonology (e.g. Newell 2008)

イロン イロン イヨン イヨン 二日

Cyclic Allomorph Selection

- > Morpheme insertion happens cyclically from the inside out.
- Phonologically conditioned allomorph selection cannot be outward sensitive (Bobaljik, 2000; Paster, 2006; Embick, 2010).

(2) ROOT-X-Y

Cyclic Allomorph Selection

- > Morpheme insertion happens cyclically from the inside out.
- Phonologically conditioned allomorph selection cannot be outward sensitive (Bobaljik, 2000; Paster, 2006; Embick, 2010).
- (2) ROOT-X

Cyclic Allomorph Selection

- > Morpheme insertion happens cyclically from the inside out.
- Phonologically conditioned allomorph selection cannot be outward sensitive (Bobaljik, 2000; Paster, 2006; Embick, 2010).

(2) ROOT-X-Y

- > Gliding is word-bound process.
- > Initial Tone Insertion (ITI) is sensitive to phrasal information.

(3) [...ITI [...Gliding...]_{Word}...]_{Phrase}

- > Gliding is word-bound process.
- > Initial Tone Insertion (ITI) is sensitive to phrasal information.

(3) [...Gliding...]_{Word}

- > Gliding is word-bound process.
- > Initial Tone Insertion (ITI) is sensitive to phrasal information.

(3) [...ITI [...Gliding...]_{Word}...]_{Phrase}

- > Gliding is word-bound process.
- Initial Tone Insertion (ITI) is sensitive to phrasal information.
- ➤ ITI bleeds Gliding.

(3) [...ITI [...Gliding...]_{Word}

- > Gliding is word-bound process.
- Initial Tone Insertion (ITI) is sensitive to phrasal information.
- ➤ ITI bleeds Gliding.

(3) [...ITI [...Gliding...]_{Word}

Odden's 1996 Account

ITI is a rule that applies countercyclically before Gliding. ITI (and other phonological rules) access morphosyntactic features.

Proposal

Cyclic reanalysis in Stratal OT requires two assumptions:

- * Prosodic Structure.
- * ITI is allomorph selection and not a phonological process.

Trade-off

ITI as allomorph selection is outward sensitive. Countercyclic Morphology instead of countercyclic phonology?

Structure of this talk

1 Data

- Gliding
- Initial Tone insertion
- Interaction

2 Analysis

- Analysis of Gliding
- ITI is not regular phonology
- ITI as outward-sensitive allomorphy

3 Extrinsic ordering

4 References

Kimatuumbi

- Kimatuumbi is a Bantu language spoken in Tanzania.
- > All Data is from Odden (1996).

High vowel gliding

- > A high vowel glides before another vowel.
- > The other vowel lengthens.
- (4) lụ-até → lwaaté
 CL-banana.hand
 'banana hand'
- (5) a. $j-\psi l a \rightarrow j \psi \psi l a$ CL-frog 'frogs'
 - b. ķi-ų́lá → kjųų́lá
 CL-frog
 'frog'

(DO96:113)

(DO96:113)

(DO96:113)

Gliding is blocked I

- Long high vowels do not glide.
- mụụ-Ø-até → mụụaté
 in-CL9-banana.hand
 'in the banana hands'

(DO96:278)

Gliding is blocked I

- Long high vowels do not glide.
- mụụ-Ø-até → mụụaté
 in-CL9-banana.hand
 'in the banana hands'

> Gliding is blocked across word boundaries.

(7) jtabú asímilwá *jtabwáasímilwá'borrowed books'

(DO96:278)

(DO96:126)

Gliding is blocked II

Gliding is blocked if

- * The high vowel has a high tone
- $\star\,$ and (\wedge) the following vowel is long.
- (8) a. pa-nj-aándjjké → panjaándjjké COMP-1SG-write.PFV 'when I wrote'
 - b. ca-tý-oóndjté → catýoóndíté COMP-1PL-peel.PFV 'what we peeled'

(DO96:123)

(DO96:118)

Both conditions must be met

- > High tone alone does not suffice for blocking.
- (9) a. pa-nj-ųtį́té → panjų́ųtįté COMP-1SG-pull.PFV 'when I pulled'
 - b. ca-tú-asíjmé → catwáasíjmé
 COMP-1PL-borrow.PFV
 'what we borrowed'
 (DO96:123) pause
 - > Long second vowel alone does not suffice for blocking
- (10) a. ų-ų́ųmįte → wų́ųmįte
 2sg-win.PFV
 'you won'
 - b. tụ-áandjjke → twáandjjke
 1 PL-write.PFV
 'we wrote'

(DO96:116)

(DO96:123)

D. Gleim (Uni Leipzig)

Glow 47 11/61

Direction of Gliding I

- > Between two 'inner' prefixes, Gliding applies left-to-right.
- (11) mụ-j-ụté → mwjjụté *mụjụụté
 2PL-OBJ-pull
 'you should pull it'

(DO96:271)

Non-cyclic self-bleeding

- If every step of affixation was a cyclic domain in phonology, we would get *mujuuté.
- > Both prefixes belong to the same cyclic domain.
- Gliding applies iteratively left to right, or is shaped by a directionally evaluated constraint (Finley, 2009).

< □ > < 同 > < 回 > < 回 > < 回 >

Direction of Gliding II

- Between an 'inner' and 'outer' prefix, gliding applies right-to-left/cyclically.
- (12) $\begin{array}{ll} m \psi {=} j {-} \psi | \dot{a} \rightarrow m \psi j \psi \psi | \dot{a} * m w j j \psi | \dot{a} \\ in {=} CL{-} frog \\ \text{`in the frog'} \end{array}$

(DO96:271)

Cyclic self-bleeding

- If the 'outer' prefixes belonged to the same cyclic domain and gliding applies left-to-right, we would predict *mwjjúlá.
- Since we know that gliding is left-to-right, 'outer' prefixes must belong to an outer cyclic domain.
- Relevant outer prefixes are kµ= 'at', mµ='in', lj= 'CL5'.

Outer prefixes

> If not bled by pother processes, 'outer' prefixes do glide.

- - 'in money' (DO96:114)

Interim Summary

Gliding

- Gliding turns a high vowel vowel sequence into glide long vowel.
- Gliding is applies first in an inner cyclic domain (root + 'inner' prefixes)
- Gliding applies then in an outer cyclic domain ((root + 'inner' prefixes)+'outer' prefixes)
- > Gliding is bound to phonological words.
- Gliding is blocked if a. the high vowel has a high tone and b. the following vowel is long.

Initial Tone Insertion

- Some morphemes start with a high-toned vowel, (roughly) if the preceding word has no high tone.
- (14) Basic ITI pattern
 - a. kjbao gánj
 'which stool'
 - b. kjtumbí ganj
 'which hill'

(DO96:245)

(DO96:245)

ITI: Targets I

- > ITI is restrcited to a set of morphemes:
- (15) ITI mophemes: prefixes
 - a. Prepositions: na- , ku-, mu-, pa-
 - b. Subordinate verb prefix: ka-
 - c. Numeral prefixes: ju-, ba-, gu-...
 - d. Determiner prefixes: ju-, a-, gu-...

(DO96:44-46) (DO96:44-46) (DO96:34) (DO96:34)

c. and d. are irrelevant for the interaction, because they attach to a closed class of roots, none of which starts with a long vowel.

Glow 47 17/61

ITI: Targets II

- (16) ITI mophemes: arguably lexical words
 - kjndaáj 'today', malaáu 'tomorrow', ncece 'four', Question words (DO96:44-46)
 - Some class 9 underived adjectives, e.g. kúlú 'big' (DO96:44-46)

ITI: Triggers

- If the preceding word is toneless, ITI morphemes have a high tone.
- (17) a. kjbao gánj 'which stool'
 - b. j-jųnj į-bilį →jjųnj įbilį
 CL8-bird CL4/8.NUM-two
 'two birds'
 - c. mwaana kitiwi →mwaana kitiwi
 child how
 'how [did he kill] the child?'

(DO96:35)

(DO96:245)

ITI: Non-Triggers

- ITI morphemes have a low tone if the preceding word has a high tone somewhere.
- (18) a. kjtumbí ganj 'which hill' (DO96:245)
 - b. mj-kóŋgo j-bilj →mjkóŋgo jbilj CL8-tree CL4/8.NUM-two 'two trees' (DO96:35)
 - c. kj-túumbili kjtjwj →kjtúumbili kjtjwj
 CL-monkey how
 'how [did he kill] the monkey?'
 (DO96:245)

ITI: Non-Triggers

- ITI morphemes have a low tone if the preceding word has a high tone somewhere.
- (18) a. kjtumbí ganj 'which hill' (DO96:245)
 - b. mj-kóŋgo j-bilj →mjkóŋgo jbilj CL8-tree CL4/8.NUM-two 'two trees'
 (DO96:35)
 - c. kj-túumbili kjtjwj →kjtúumbili kjtjwj
 CL-monkey how
 'how [did he kill] the monkey?'
 (DO96:245)
 - The high tone that blocks ITI can be quite far away!

ITI-Triggers with high tone I

- ITI morphemes have a high tone, if the preceding word has a high tone only on a prefix.
- kí-ŋoombe ganj →kíŋoombe gánj
 PL-cow which
 'What type of cows?'

(DO96:247)

ITI-Triggers with high tone II

- If a verb has only a high tone on a first root mora, ITI morephemes are high toned.
- nj-ka-téleka m μ =kj-téleéko \rightarrow njkatéleka m μ kjtéleéko (20) а. 1SG-FUT-cook in=CL7-cooking.pot 'I will go cook it in the cooking pot' (DO96:248)
 - b. naa-jí-i kú=soóko →naajíi kúsoóko 1SG.PST-go-PFV to=market 'I went to the market'

(DO96:248)

First and final tone blocks ITI

- High tone on only mora of verb blocks ITI.
- (21) a. wáŋga-ljá na=mambóondo → wángaljá namambóondo without-eat with-Mamboondo
 'Without having eaten with Mamboondo'
 (DO96:248)
 - b. mbala ljá mų=kį-líndiilo → mbala ljá mųkįlíndiilo
 1sG.want eat in=CL7-guard.shack
 'I want to eat in the guard shack'
 (DO96:248)

No preceding context

- If nothing precedes the ITI morpheme, it surfaces with a low tone.
- (22) a. $ky=syyle \rightarrow kysyyle$ to=school
 - b. $m_{\psi} = k_j k_a a_{n_j} o \rightarrow m_{\psi} k_j k_a a_{n_j} o = n_{\psi} k_j k_j k_j a_{n_j} b_{n_j} o = n_{\psi} k_j k_j k_j a_{n_j} b_{n_j} b$

Interim Summary

ITI

- Targets are from a list of prefixes/function words.
- They have a high-toned and a low-toned alternant.
- The high toned alternant appears after:
 - low toned stems (excluding prefixes).
 - \star verbs with a high tone on the first mora and no other tone.
- The low toned alternant appears elsewhere:
 - * after stems with a high tone.
 - * after the floating topic tone.
 - ⋆ initially.
Cyclic expectation: Counterbleeding

- > Gliding applies in a lexical domain, the word.
- > ITI applies in a phrasal domain.
- If lexical processes apply before phrasal processes, Gliding must apply before ITI.

Cyclic expectation: Counterbleeding

- Gliding applies in a lexical domain, the word.
- > ITI applies in a phrasal domain.
- If lexical processes apply before phrasal processes, Gliding must apply before ITI.
- ➤ Thus, ITI must counterbleed ITI.
- (23) a. Gliding kụ-aanjý → kwaanjý b. ITI
 - utili kwaanjý → utili kwaanjý

Bleeding

- > However, factually ITI bleeds Gliding.
- (24) a. ųtįlí kų-aanjų́ → ųtįlį kwaanjų́
 2SG-run.PFV.SBJV to-firewod
 'You should run to the firewood'
 - b. µtjlj kų-aanjų́ → µtjlj kų́aanjų́
 2SG-run.PFV to-firewod
 'You ran to the firewood'

(DO96:275)

(DO96:275)

Crucial assumptions

- Phrasal phonological processes can be restricted to phonological words.
- ITI is allomorph selection.

Schematic derivation of countercyclic bleeding

Word level phonology							
aan j ý	Input						
[aan j ý] _w	Prosodic structure is built						
Morphosyntax							
[ụtjlj] _w {ký,ky} [aan j ý] _w	Concatenation						
[ụtjlj] _w ký [aan j ý] _w	Allomorph selection						
Phrase leve	Phrase level phonology						
[ụtjlj] _w [kýaan j ý] _w	Prosodification						
[ụtjlj] _w [kýaan j ý] _w	Gliding is blocked						

(25)

Phrasal Gliding

- Phrasal Gliding applies between 'outer' prefixes and stems.
- > 'outer prefixes' integrate into a previously built prosodic word ω , either due to constraints (Selkirk, 1995), or due to a pre-phonological mechanism (Lee & Selkirk, 2022).

(26)

Phrase level Blocking: words

(27) Derivation of blocking of gliding across word boundaries

		j] _w [a] _w	*SHIFT	MAX-T	Exc-w	*;.V	нµµ.*	μ-х-Μ
13	a.	j] _w [a] _w				*		
	b.] _w [ja] _w			*!			

- (28) EXC(ORPORATE)- ω Count a violation for a final mora dominated by ω_i in the input that is not dominated by ω_i in the output.
 - Without prosodic structure, Gliding could not be phrasal and restricted to words.

・ロト ・ 同ト ・ ヨト ・ ヨ

Analysis Analysis of Gliding

Phrase level Blocking: High tone – long vowel

1	$\mathcal{O}(\mathbf{c})$	וב
1	2	"
•		

Derivation of blocking of gliding with *iVV*

		į́ _i aja _k	*SHIFT	MAX-V:	MAX-T	чий.*	*¡.V	.,ниц.*	ΜΑΧ-μ
137	a.	į́ _i a _j a _k		l			*		
	b.	já _i a _j a _k		 		*!		*	
	C.	ja _j a _k		I	*!				*
	d.	já _j a _k	*!	l I					*
	e.	já _i a _k		*!					*

D. Gleim (Uni Leipzig)

Outward-sensitive Allomorphy

Glow 47 32/6*

Analysis Analysis of Gliding

Phrase level Blocking: High tone – long vowel

1	っ	a	۱
J	_	J	1

Derivation of blocking of gliding with *iVV*

		į́ _i a _j a _k	*SHIFT	MAX-V:	MAX-T	щщ.*.	*¡.V	.ннн.*	ΜΑΧ-μ
13	a.	į́ _i a _j a _k		I			*		
	b.	já _i a _j a _k		 		*!		*	
	C.	ja _j a _k		I	*!				*
	d.	já _j a _k	*!	l I					*
	e.	já _i a _k		*!					*

(30)

*Shift

Count a violation for a tone that is associated in the input to a mora μ_i but in the output associated to a mora μ_j and not associated to μ_i .

Analysis of Gliding Analysis

Phrase level Blocking: High tone – long vowel

1	n	a	۱
L	_	J	1
•			

Derivation of blocking of gliding with *(VV*)

		į́ _i aja _k	*SHIFT	MAX-V:	MAX-T		*¡.V		ΜΑΧ-μ
13	a.	į́ _i a _j a _k					*		
	b.	já _i a _j a _k		 		*!		*	
	C.	ja _j a _k		I	*!				*
	d.	já _j a _k	*!	l I					*
	e.	já _i a _k		*!					*

(31)

MAX-V

Count a violation for any mora that is associated with a vowel that is associated to another mora in the input and is not present in the output.

Representations

High tone is not enough

(34)

≣। ≣ •) ९ (Glow 47 34/61

イロト イヨト イヨト イヨト

Long vowel is not enough

		į _i aja _k	*SHIFT	MAX-V:	MAX-T	 *¡.V	.,ниц.*	ΜΑΧ-μ
	a.	į̇ _i a _j a _k		I		*!		
	b.	ja _i a _j a _k		1			*!	
r§	C.	ja _j a _k		I I				*
	d.	ja _i a _k		⊢ * !				*

Interim Summary

Analysis of Gliding

- Gliding between 'outer' prefixes and the stem is phrasal.
- Gliding across words is blocked by EXCORPORATE-ω with necessary reference to prosodic structure.
- A high toned vowel before a long vowel cannot glide, because, neither the high toned vowel nor the long vowel may lose a mora.

< ロ > < 同 > < 回 > < 回 >

Countercyclicity avoided?

If gliding with 'outer prefixes' is phrasal, and it is bled by phrasal phonological process (ITI), the bleeding interaction is no longer countercyclic. Problem solved?

Countercyclicity avoided?

If gliding with 'outer prefixes' is phrasal, and it is bled by phrasal phonological process (ITI), the bleeding interaction is no longer countercyclic. Problem solved?

No

- ITI does not behave like a phonological process, it is rather like allomorphy.
- Even if it is analysed as a process, the bleeding interaction does not follow without an additional extrinsic ordering statement.

< ロ > < 同 > < 回 > < 回 >

ITI is not a process

- > ITI targets a closed class of elements.
- ITI does not look like a regular OCP process crosslinguistically.
- > ITI does not look like OCP processes in Kimatuumbi.
- ITI is sensitive to morphosynactic features of the trigger (stem boundary, N/V distinction).

Closed class of elements

- Given that ITI does not apply to every word-initial syllable, it cannot be a general phonological process.
- If ITI is a process, ITI morphemes need some special representation.
- > They could have a floating H tone.
- (36) kų H

Problem I

Floating tones typically attach to an adjacent morpheme, not to the contributing morpheme. This is true crosslinguistically, but also in Kimatuumbi.

(37) maH-kooŋgoní → makóoŋgoní 'hartebeests'

OCP long distance

The floating tone must be deleted/ not associated if preceded by a high tone long distance.

Problem II

OCP is not evaluated long distance crosslinguistically (Meyers, 1997). OCP is also not evaluated long distance in Kimatuumbi.

(38) a. mjH-kaáte → mjkaáte 'loaves'

(DO96:113)

 b. makoongoní → maH-kóongoní 'hartebeests'

< ロ > < 同 > < 回 > < 回 >

Initial ITI

- If High tone association of ITI morphemes is blocked by the OCP, we expect a high tone domain initially.
- (39) a. $ky=syyle \rightarrow kysyyle$ to=school
 - b. $m_{\psi} = k_j \cdot k_{aango} \rightarrow m_{\psi} k_j k_{aango}$ in=CL-frying.pan

Morphosyntactic reference

- ITI ignores prefixes and sees thus the prefix-root boundary.
- ITI ignores the first mora of verbs, and sees thus the category V (or v).

ITI as Allomorphy

- Allomorphy targets definitionally restricted sets.
- Phonologically conditioned allomorph selection is not necessarily phonologically reasonable (Paster, 2006).
- Phonologically conditioned allomorphy has access to both phonological and morphological features.

Assumptions

Allomorphy happens before regular phonology (Paster, 2006; Kalin, 2020) at multiple cycles (Kalin, 2020).

< ロ > < 同 > < 回 > < 回 >

Overview of the Analysis

Word level phonology							
aan j ý	Input						
[aan j ý] _w	Prosodic structure is built						
Morphosyntax							
[ụtjlj] _w {ký,ky} [aan j ý] _w	Concatenation						
[ụtjlj] _w ký [aan j ý] _w	Allomorph selection						
Phrase leve	Phrase level phonology						
[ụtjlj] _w [kýaan j ý] _w	Prosodification						
[ụtjlj] _w [kýaan j ý] _w	Gliding is blocked						

(40)

Subcategorisation frame

- (41) Subcategorisation frames for TODAY
 - a. ... μ́] malaáu ↔ TODAY
 Directly after a high tone, the alternating morpheme is always toneless.
 - b. [μ...]_{Σ:V} málaáu Today
 Verb stems with only an initial H lead to the selection of the high-toned variant.
 - c. $[...]_{\Sigma}$ málaáu \leftrightarrow TODAY Stems without any high tone lead to the selection of the high toned variant.
 - d. malaáu \leftrightarrow TODAY The default case has the toneless syllable.

ITI Allomorphy is outward sensitive

(42) [[μ tjlj]_V [{ $k\dot{\mu}, k\mu$ } [$aan_{J}\dot{\mu}$]_{PP}]_{VP}

D. Gleim (Uni Leipzig)

Outward-sensitive Allomorphy

Glow 47 46/61

Outward-sensitive Morphology

- Outward sensitive allomorphy is only necessary countercyclic if every merge operation is a cycle.
- If the cycle is equivalent to a phase, some outward sensitive allomorphy can be expected (Deal & Wolf, 2017; Rolle & Bickmore, 2022).
- Can phases make Kimatuumbi allomorph selection cyclic?

Domain of ITI

- If there is no CP boundary between trigger and target, ITI applies regardless of syntactic relation.
- If there is a CP boundary, ITI applies only if the trigger is in the embedding CP, and the target in the embedded CP.
- (43) a. naamini cáangú caaóbite
 [naamini [{cá,ca}-angú caaóbite]_{CP}]_{CP}
 expect.1SG POSS.CL-1SG lost
 'I expect that mine is lost'
 - b. ... jwaátwetíj nama namboópo
 [...[jwaátwetíj nama]_{CP} {na,ná}=mboópo]_{CP}
 took.REL meat with=machete
 '[I killed the man] who took the meat with a machete'
 - > If the CP is a phase, ITI is still countercyclic.

< ロ > < 同 > < 回 > < 回 >

Extrinsic ordering and non-modular ITI

With non-modular phonology and extrinsic ordering, the assumption of prosodic structure suffices to derive the interaction.

Word le	Word level phonology				
aan j ý	Input				
[aan j ý] _w	Prosodic structure is built				
Mor	phosyntax				
[ụtjlj] _w kụ [aan j ý] _w	Concatenation				
Phrase I	evel phonology				
[ụtjlj] _w [kụaan j ý] _w	Prosodification				
[ụtjlj] _w [kýaan j ý] _w	ITI Rule				
_	Gliding				

D. Gleim (Uni Leipzig)

44)

Without anti-modular rules

- Given the data in Odden (1996), stems can be replaced with a prosodic domain that excludes prefixes.
- Reference to verbs can be avoided if we assume that verb-inital morae are defective (45).

(47) ITI-Rule VH $\rightarrow \acute{V} / [(\acute{\mu}_w)\mu\mu_0]_{\pi}$ _

Without extrinsic ordering

- > Can the rule in (47) become a constraint?
- > Yes! But it still derives counterbleeding.
- (48) ITI Constraint

Count a violation for a phonological word without a high tone on the first mora that is preceded by a toneless word.

(49)

< 🗇 🕨 < 🖃 🕨

Interim Assessment

Trade offs

- An analysis without extrinsically ordered rules requires outward sensitive allomorph selection, and prosodic structure.
- An analysis without outward sensitive allomorph selection either requires countercyclic phonology (Odden, 1996) or questionable extrinsically ordered rules (+ prosody).

< ロ > < 同 > < 回 > < 回 >

Diverging predictions (Gleim, 2024)

- The combination of prosody and and Stratal OT can derive some apparent countercyclic interactions, such as (most instances of) countercyclic bleeding and feeding, if the cyclic domain aligns with a prosodic domain.
- It cannot derive transparent missaligned countercyclicity, where no adequate prosodic domain exists.
- > It cannot derive (most) opaque countercyclic interactions.
- Serially ordered rules with prosody can derive all of these patterns.

< ロ > < 同 > < 回 > < 回 >

Countercyclic Counterfeeding (CCCF)

- P: iterative VH
- (50) poto-ku \rightarrow putuku
- Q: Non-itearive phrasal VH
- (51) $I \sigma t \sigma m t \sigma \rightarrow I \sigma t \sigma m t \sigma$
- P counterfeeds Q
- (52) loto poto-ku \rightarrow loto putuku

Extrinsically ordered rules can derive CCCF

(53)

Derivation of counteryclic counterfeeding

Cycle φ ₁						
pʊtʊku	Input					
[pʊtʊku] $_{\pi}$	PROSODIFICATION					
Cycle φ ₂						
[lʊtʊ] $_{\pi}$ [pʊtʊku] $_{\pi}$	Input					
[[lʊtʊ] $_{\pi}$ [pʊtʊku] $_{\pi}$] $_{\phi}$	PROSODIFICATION					
—	Vowel-Harmony- ϕ					
[[lʊtʊ] $_{\pi}$ [putuku] $_{\pi}$] $_{\phi}$	Vowel-Harmony- π					
[[lʊtʊ] _{π} [putuku] _{π}] _{ϕ}	Output					

Stratal OT + prosody cannot derive CCCF

(54)

Derivation of countercyclic counterfeeding fails

		[lʊtʊ] _ພ [pʊtʊ-ku] _ພ	ω-HV	۰HV	CRISP	EDGE	Баітн
	a.	[lʊtʊ] _w [pʊtʊku] _w	*!				
	b.	[lʊtʊ] _w [putuku] _w		*!			
ß	C.	$[lutu]_{\omega}[putuku]_{\omega}$				*	****
	d.	[lʊtu] _w [putuku] _w		*!		*	** *

Crosslinguistic pattern

(55) Countercyclic Interaction patterns

	PaC-OT	PaC-RB	Attested						
Transparent interactions									
aligned	1	✓	1						
misaligned	X	1	×						
Opaque interactions not derivable in OT									
aligned	X	1	X						
misaligned	X	1	×						
3-Level-opacity	\checkmark	\checkmark	\checkmark						
Conclusion

- The interaction of Gliding and ITI in Kimatuumbi is a problem for cyclic phonology.
- The assumption of prosodic structure is necessary to derive it cyclically.
- \succ in addition, we need either:
 - * The assumption thet ITI is outwardlooking phrasal allomorphy.
 - * Powerful representation with extrinsically ordered rules.
- > The data suggest that ITI is not a phonological process.
- If we adopt extrinsic rule ordering and prosody, virtually all countercyclic interaction patterns can be derived, whereas prosody and OT derives only an attested subset.

- Bermúdez-Otero, Ricardo. 2012. The architecture of grammar and the division of labour in exponence. In Jochen Trommer (ed.), *The morphology and phonology of exponence (Oxford Studies in Theoretical Linguistics 41)*, 8–83. Oxford: Oxford University Press.
- Bobaljik, Jonathan David. 2000. The ins and outs of contextual allomorphy. *University of Maryland working papers in linguistics* 10(1). 35–71.
- Chomsky, Noam & Morris Halle. 1968. *The sound pattern of English*. New York, Evanston and London: Harper & row.
- Deal, Amy Rose & Matthew Wolf. 2017. Outwards-sensitive phonologically-conditioned allomorphy in Nez Perce. In Vera Gribanova & Stephanie Shih (eds.), *The morphosyntax-phonology connection: Locality and directionality at the interface*, 29–60. New York: Oxford University Press.
- Embick, David. 2010. *Localism versus globalism in morphology and phonology*. MIT Press.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Finley, Sara. 2009. *Formal and cognitive restrictions on vowel harmony*: Johns Hopkins University dissertation.
- Gleim, Daniel. 2024. Countercyclic process interactions. Universität Leipzig manuscript.
- Kalin, Laura. 2020. Morphology before phonology: A case study of Turoyo (Neo-Aramaic). *Morphology* 30. 135–184.
- Kiparsky, Paul. 1982. Lexical morphology and phonology. In In-Seok Yang (ed.), *Linguistics in the Morning Calm*, 3–91. Seoul: Hanshin Publishing Company.
- Lee, Seunghun J. & Elisabeth Selkirk. 2022. Xitsonga tone: The syntax-phonology interface. In haruo Kubozono, Junko Itô & Armin Mester (eds.), *Prosody and prosodic interfaces*, Oxford: Oxford University Press.
- Meyers, Scott. 1997. OCP effects in Optimality Theory. *Natural Language & Linguistic Theory* 15(4). 847–892.

- Newell, Heather. 2008. *Aspects of the morphology and phonology of phases*: McGill University dissertation.
- Odden, David. 1996. *The phonology and morphoilogy of Kimatuumbi*. Oxford: Oxford University Press.
- Orgun, Cemil Orhan. 1997. Cyclic and noncyclic phonological effects in a declarative grammar. In Geert Booij & Jaap van Marle (eds.), *Yearbook of morphology 1997*, Dordrecht: Springer.
- Paster, Mary. 2006. *Phonological conditions on affixation*: University of California, Berkeley dissertation.
- Rolle, Nicholas Revett & Lee Bickmore. 2022. Outward-sensitive phonologically-conditioned suppletive allomorphy vs. first-last tone harmony in cilungu. *Morphology* 32(2). 197–247.
- Selkirk, Elisabeth. 1995. The prosodic structure of function words. In Jill Beckman, Laura Walsh Dickey & Susanne Urbanczyk (eds.), University of Massachusetts occasional papers in linguistics 18, 439–470. Amherst, MA: GSLA.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >