Minimalist Grammars and Decomposition

Greg Kobele

April 12, 2021

In an exchange with Pullum, |Chomsky| [1990] writes

Theories should be formulated clearly enough, and observations
firmly enough established, so that inquiry can proceed in a con-
structive way. Beyond that, experiments can be carried out more
carefully and theories made more precise, but the burden of proof
is on those who consider the exercise worth undertaking.

As Chomsky points out, it is the person who deviates from standard prac-
tice in a community that must convince others of the value of their position.
Many arguments have been marshalled in support of adopting a more rig-
orous stance than is common in Minimalist syntax. A precise linguistic
formalism allows us to make rigorous contact with other fields, most notably
in the behavioural and neural sciences, to reveal fundamental similarities and
differences between different linguistic theories, and to formulate typological
universals and proposing on that basis novel empirical research questions,
not to speak of its indespensibility for more engineering based applications.
Some of these will be taken up in Graf’s chapter in this volume. However,
these are justifications which do not address the usual concerns of the work-
ing linguist, such as ’how do I analyze this data’ or ’how do I adjudicate
between these two theoretical proposals’? Knowing that there exists an al-
gorithmic way of converting an analysis that uses only leftward movement
into to one that uses only rightward movement is a small consolation to a
linguist who is asking not whether an analysis is possible, but whether it is
good. Still, a precise formalism is useful as well to working linguists, pre-
cisely because it does allow for their questions to be addressed, and this in
sometimes novel ways. The aim of this chapter is to introduce the formalism
of Minimalist grammars, and to demonstrate that it can offer useful insights
into linguistics.

Chomsky has said repeatedly that Minimalism is a program, and not a
theory, thus emphasizing that there is a coherent research program, indepen-

dent of any particular instantiation of it E| Thus it makes perfect sense to have
Starke-style Nanosyntax coexist alongside the more spare Chomskyian C-T-
v-V clausal backbone; both can be different (perhaps even incompatible) in-
stantiations of the same general research program. Similarly, a formalisation
of Minimalism will of necessity cleave to a particular instance of the program.
Yet a good formalisation will also be able to be modified so as to formalise
different instances within the program. Ed Stabler formalized an early ver-
sion of Minimalism in the late nineties [Stabler, 1997]. From the standpoint
of the present, it looks somewhat baroque: there is no discussion of agree-
ment, Merge is not free, there are no copies, no set-theoretic structures, no
intepretable/uninterpretable distinction, no indices on traces, no sidewards
movement, no counter-cyclic operations, no tucking-in, no structure removal,
etc. Yet it has been repeatedly shown that the gamut of analytical varia-
tions can be straightforwardly added to this basic formalism (see e.g. |Graf
[2012] for an overview). |Stabler [2011]| has demonstrated the extensibility
of the Minimalist grammar formalism, extending it with (un-)interpretable
features, relativized minimality and phase-like constraints on movement, as
well as providing pointers to the literature for other extensions (for example
on various forms of head-movement, adjunction, sidewards movement, and
copying).

There are innumerable (sometimes slight) variations of theories in the
Minimalist vein. Many variants seem to diverge from each other at particular
points:

1. What are the syntactic atoms?
2. How does syntax relate to the interfaces?
3. Where does explanation reside?
The answers to these questions pursued in this chapter are:
1. The syntactic atoms are feature towers.
2. Derivations are directly interpreted.

3. The locus of linguistic analysis is the lexicon.

!Chomsky characterizes the research program underlying Minimalism in terms of an
approach to what he calls "Darwin’s Problem’ (the evolutionary emergence of language).
This program is then wholly independent of the grammatical architecture, of movement, of
agreement, probes and goals, and what not. This is not what I am characterizing here as
’the program of Minimalism,” which starts from merge and move as the basic grammatical
operations (as is Chomsky’s actual practice).

One prominent difference between Minimalist grammars and current
Minimalist practice lies in the fact that Minimalist grammars emphasize the
lexicon, while Minimalist practice tends to emphasize the interfaces. |Graf
[2011] and Kobele |2011] have proven a result which entails that it is for-
mally possible to shift the filtering effects of the interfaces into the lexicon,
and to shift the derivational control of the lexicon over to the interfaces (this
is discussed in [Kobele| [2014], and greatly expanded upon in |Graf [2017]).
There is surely some compromise of optimal elegance, rendering unto the
interface what is the interface’s, and unto the lexicon what is the lexicon’s.
I will emphasize the lexicon in this contribution, thereby compensating for
current Minimalist practice.

Despite this emphasis on the lexicon, many points will emerge which are
completely independent thereof. For example, while we will begin our anal-
ysis with matching graphs over feature towers, as in figure indicating
which features of which lexical items check each other during a derivation,
we will construct our analyses using dependency structures, which make no
reference to features at all. (Fear not, these representations are equivalent,
both to each other and to more familiar constituentful structures, as will be
shown in section) When representations are equivalent, they are not al-

AT TR

which mango C ripened

(a) Matching graphs over (b) Dependency structures
feature towers

{{whichg, mango, }, {Cq, {ripened;, {whichg, mango,}}}}
(c) Sets

Figure 1: Structures, both with and without explicit features

ternative theories, but rather alternative modes of presentation of the same
underlying truth. Thus at any point the one should be used which is best
suited for the expository task at hand.

While an analysis is completely determined by a lexicon, a set of lexical
items with feature bundles, we will present our analyses rather in terms of
lexical flowcharts, as in figure [2] which are more visually accessible. From
such a flowchart, we can exactly reconstruct a feature bundle filled lexicon,
but the flowchart allows one to easily visually trace out the possible deriva-

Figure 2: A lexical flowchart

tions implicit in the lexicon.

The main contribution of this paper is the introduction of a novel anal-
ysis method, which I call (lexical) decomposition. Lexical decomposition is
made possible by the fact that the Minimalist structure building operations
(Merge, both internal, external, and head) are rich enough to permit lexical
rules to be implemented as lexical items. This provides for a way to elimi-
nate redundancy from a given lexicon, effectively yielding a mechanism for
updating a grammar so as to optimize an evaluation metric [Chomskyy, [1965].
Lexical decomposition yields a (partly) mechanical method for optimizing an
analysis, which converges to familiar linguistic ones. We can thus see that
certain well-known analyses are not random points in analytical space, but
are rather optimal points given very basic initial assumptions (couched in
terms of whole-word dependencies).

This paper consists of two major parts. Section [I] introduces the formal
framework of Minimalist grammars, which is then used in section[2|to develop
a familiar analysis of the English auxiliary system |Chomsky| [1957], Lasnik
[1995|, as well as other canonical A-movement phenomena.

1 Formal foundations of Minimalist syntax

This section introduces the formal framework of Minimalist grammars, albeit
from an unorthodox perspective. Instead of beginning with the syntactic op-
erations of internal and external Merge, and a discussion about how these
put expressions together, we begin with a discussion of features (in section
and feature checking (in section|1.2)). Describing which features of which
lexical items check which others, one ends up with a graph (what [Stabler

[1999] calls a matching graph), whose edges connect pairs of features which
check each other at a derivational step. This graph provides a simple record
of derivationally established feature checking relationships. An important
role of formal work is to identify the essential properties of theoretical ob-
jects. Section[l.3]establishes that these matching graphs are informationally
equivalent to the more familiar syntactic structures Minimalists use to rep-
resent the structure of expressions, as well as dependency structures of a
certain kind. Section [I.4] discusses various issues concerning the interface to
PF.

1.1 Features and Feature Bundles

One basic idea is that properties of lexical items drive the syntactic com-
putation |Chomsky, [1993]. These properties are reified into what we will
call features. I will assume there to be only a finite number of basic syn-
tactic features in a given language - of syntactically relevant properties of
lexical items. There is no claim being made about whether they are brute
or emergent, or whether they are uniform across languages. Minimalist syn-
tacticians tend to view syntactic features as (at least partly) reducible to
morphological features. This reductive stance is perfectly compatible with
the formal setup here, as would be its opposite. Adopting the more general
perspective as I do here fits better with the goal of formalizing the program,
not a particular one of its instances.

Features are the syntactically relevant properties of lexical items, but
what exactly are these? Borrowing terminology from the dependency liter-
ature, in a complete sentence, a lexical item will govern certain others, and
will be a dependent of (or be governed by) still others. In constituency ter-
minology, we might rephrase this as saying that a lexical item will contain
other (maximal projections of) lexical items in its maximal projection, and
will itself be contained in the maximal projections of other lexical items.
This is commonly talked about in terms of selection, with the expression in
a lexical item’s maximal projection being those it selects, and it appearing
in those maximal projections which select it. These are two very different
things, and accordingly a lexical item will have two kinds of features: one
kind (a positive feature) which is relevant for determining which lexical items
it will govern, and another kind (a negative feature) which is relevant for de-
termining which lexical items may in turn govern it. For any feature x, its
positive version will be written as x*, and its negative one as x~. This iden-
tifies selection with the property of lexical items which drives the syntactic
computation.

Although I assume there to be only a finite number of basic feature types
in a given langauge, a lexical item might have multiple of them. A collection
of features will be called a feature bundle. When a lexical item has multiple
features, an important mechanical question is which feature is to be used
next? The locus principle (attributed by |Collins [2002]| to Chomsky| [2000])
is one such, stating that (in our terms) no negative feature may be used if
there are positive features available. There is a tendency in the literature to
find extrinsic principles which determine the order in which features are to
be used (which may then vary across languages, as in /Assmann et al. [2015]).
Despite the empirical and theoretical differences the various approaches in
the literature may have, the end result is often the same: features in a bundle
are used in a particular order. I adopt this here, but simply stipulate that
feature bundles are structured as a finite list of features, remaining agnostic
about whether this should be derived from something more basic. It is at any
rate very convenient to be able to write down a feature bundle as a sequence
of features (as opposed to a partially ordered multi-set, for example).

1.2 Feature Checking

The point of positive features is to indicate a need to govern something,
and the point of negative features is to indicate a need to be governed by
something. As an example, consider a wh-determiner like which. Which
requires an NP complement, itself forms a DP, and requires being licensed as
a wh-word. The syntactic features it has then can be represented as follows.
It needs to select an NP, so it has a feature n*. It can be selected as a DP, so
it has a feature d—. And it must be further licensed as a wh-word, so it has a
feature w—. Moreover, these features must be satisfied in a particular order.
We would like words to satisfy their selectional properties before themselves
being selected for, and so in its feature bundle the positive feature (n™) must
precede the others. General syntactic considerations dictate that it should
be selected for before being wh-licensed, and so in its feature bundle the
negative feature d~ should precede the negative feature w. Thus, the lexical
entry for the word which could look as follows:

which :: nt.d”w™

This lexical entry contains two kinds of information. The first, written to the
left of the colon, specifies the name of the lexical item (in this case, which)E|

2The name of a lexical item is important for determining how it is interpreted at the
interfaces, although it is often convenient to conflate the name of a lexical item with some

The second, written to the right of the colon, specifies its syntactic feature
bundle.

The distinction between positive and negative (or governer and governee)
features mirrors a distinction between internal and external syntactic struc-
ture. The internal structure of a word is everything in its maximal projection,
and this is determined by its positive features. The external structure of a
lexical item refers to where it’s maximal projection occurs within a larger
structure, which is determined by its negative features. We first concentrate
on the internal syntax of which. Its feature bundle indicates that it requires
a noun phrase. A lexical item like mango is a NP in and of itself, and so
it bears the (negative) feature n~. It neither requires any syntactic argu-
ments, nor does it participate in any further syntactic dependencies. Thus
the lexical entry for the word mango could look as follows:

mango :: n

These lexical items (which and mango) ’fit’ together in a syntactically
relevant way: the first feature in the feature bundles of both are the pos-
itive and negative version respectively of the same atomic feature. In this
situation, the two features cancel each other out (or can be checked). We
can represent this by drawing a line between these two features, as shown in

figure

w-
d
nt n-
which mango

Figure 3: Checking features

After doing this, we have linked together two lexical items. This creates

aspect of its pronunciation. This practice breaks down in the face of certain kinds of
homonymy, and becomes very unwieldy the farther removed from wordhood the lexical
item is.

3To make this visualization more straightforward I have written the feature bundles
vertically, from bottom to top instead of from left to right, and atop the lexical item’s
name,

something (a connected graph) which I will call a complex syntactic object.
The complex syntactic object so connected has a head.

Definition (Head). A head is an item in a connected graph without any
checked negative features.

I assume that every lexical item has at least one negative feature, which
we can understand as its part of speech, or category. Note that a lexical
item is its own head, under this definition. A complex syntactic object
may also have unchecked features in the feature bundles in different parts
of this complex. In the case of figure [3| there is only one feature bundle
with unchecked features, and these are the d= and w~ of which. Note that
which also has no checked negative features; it is therefore the head of this
syntactic object.

As there are no more unchecked positive features, we are done with the
internal syntax of which. As which mango is a DP, it must be selected by
something which subcategorizes for a DP. As an example, we may choose
the verb ripened. This is a tensed intransitive verb, which means that it
selects a DP argument (d¥), and then may be selected as a tensed phrase
(t7). Its lexical entry might look as follows:

ripened :: dT.t~

While the first feature of the feature bundle at the head of the syntactic
complex which mango (the checked n™) does not fit together with the first
feature of ripened (the d1), the first unchecked feature of which mango (the
d™) does. Istipulate that only the first unchecked feature of a feature bundle
is accessible for checking at any time.

Stipulation 1 (Accessibility). Only the first unchecked feature in a feature
bundle may participate in checking

Thus feature checking makes new features accessible in a feature bundle.
With this in mind, the lexical item ripened fits together with the complex
which mango as their first unchecked features are identical but of opposite
polarity. Note crucially that ripened does not fit together in this way with
the lezical item which by itself. We can connect the matching first unchecked
features of both feature bundles with a line, creating a larger syntactic com-
plex, the head of which is now ripened (now that which has had its d~ fea-
ture checked, the only lexical item without any unchecked features is indeed
ripened). Note that this larger complex expression has two feature bundles
with unchecked features; one (attached to which) contains just the unchecked

=
d+ p— d-

ripened nt f—14 n-

which mango

Figure 4: adding the verb

feature w—, and the other (on the head, ripened) contains just the unchecked
feature t~.

In our semi-naive background syntactic theory, we need a wh-licensor for
the wh-feature on the wh-word. This is usually thought to reside in a head
above tense. Adapting this idea into our formal theory, we must have a new
lexical item which selects a tensed phrase t™, and then which licenses a wh-
phrase (w"). Bowing to tradition, we may call the category of this head a
complementizer (c¢7). As it contributes nothing to the pronunciation of the
sentence, it is not useful to give it a name reminiscient of its pronunciation,
and so we will name it C.

C::thwh.c™

Our rules for connecting expressions force us to first draw a line between
the feature t~ in our complex expression ripened which mango and the t* in
the lexical item C. This is because the tT is the first unchecked feature in the
feature bundle of C. This constructs a new complex expression containing
all four lexical items, with two not-completely checked feature bundles: w™
and wh.c™.

=
d+ d-
ripened n* n-
which mango

Figure 5: adding a complementizer

In this expression, the only node without any checked negative features
is C. While which has an unchecked negative feature w—, it also has a checked

d~ feature. Therefore, C is the head of this expression.

For the first time we have a complex expression which contains two fea-
ture bundles with matching first features, thus satisfying in itself our criterion
of "fitting together’. We thus draw a line connecting the postive and negative
versions of the w feature. In the resulting expression, there is but a single
feature which is unchecked, and it is the category feature of the head. We
call such an expression complete.

t d-

1]

ripened which mango

n+ n-

Figure 6: checking the wh-features

We have ended up with a graph indicating feature checking relationships
between lexical items. To define such a graph, one simply connects match-
ing unchecked features to one another one after the other. This process can
be thought of as a derivation, and the lexical items making up the graph
the numeration. The entire derivation is given again in figure [} Moving to
numerations, we need to be more careful with how we understand our previ-
ous (and upcoming) definitions and stipulations regarding feature checking.
The definition of head given previously states that a head is an item in a
connected graph without any checked negative features. Once we have a nu-
meration, our graph consists of multiple disjoint connected subgraphs. We
must therefore understand these definitions and stipulations as speaking of
connected subgraphs. For example, the initial numeration in figure [7] consists
of four maximal (trivially) connected subgraphs: each node is a maximal sub-
graph, and is therefore a head. After the n features of which and mango are
connected together, there are three maximally connected subgraphs: C and
ripened continue to be their own connected subgraphs (and therefore their
own heads), but now the two node graph consisting of which and mango is a
maximally connected subgraph, it’s head is of course which.

It is worth noting that the basic operation of adding an edge between two
lexical items is strictly monotonic — it exclusively adds to a representation,
and does not otherwise modify it; this is the content of the No Tampering
Condition. Squinting, we can identify adding an edge with the operation

10

Figure 7: Constructing a feature checking graph for “Which mango ripened”

Merge, and we see that, indeed, internal and external Merge are identical
operations. “Note that both operations come free: it would require stipu-
lation to bar either of them. Furthermore, there are no operations ‘form
copy’ or ‘remerge,” just simple Merge.” [Chomsky, 2013| Although we have
just been recording which features of which lexical items check each other,
there appears to be some tantalizing connection between this and the more
standard presentations of Minimalism. We will see shortly (in section
that this is not an accident.

Our rule for constructing edges, “connect the first unchecked features
of matching feature bundles,” has some undesired corner cases. As it is
stated, nothing stops us from taking two syntactic complexes, and checking
features from feature bundles which are not at the heads of the complexes;
this gives rise to grafting, parallel merge, and sidewards movement |Nunes|
2001}, |Citkol, 2005, van Riemsdijk, 2006|.E| I wish to block this in this chapter.
I will stipulate the following condition on feature checking:

Stipulation 2. The head of a syntactic complex must be involved in any
feature checking relationship

If there are two syntactic complexes, then both their heads must be
involved (i.e. must contain one of the pair of matching features). However,
if there is but one syntactic complex (as there was in the last step of our
previous derivation, where the w features were checked), its head must be
involved, but this allows a non-head feature bundle to host the other feature.

4As these authors note, it requires stipulation to block any of them, given Chomsky’s
published characterizations of Merge.

11

Another fringe case involves competition between features. As an exam-
ple, if there had been multiple feature bundles in our previous example with
an accessible w™ feature, any one of them could have checked the w™ feature
at the head. I will want to prohibit this as WGHH

Stipulation 3 (SMC). A feature may check another only if there is no other
accessible feature which could have checked it

The proper way of understanding this stipulation when working with a
numeration is to consider just the maximal subgraphs which contain the
two features in question. Thus this restriction also prohibits us from using
a feature from a separate complex to check a feature that could have been
checked from within the complex (in now outdated parlance, it enforces a
move over merge constraint [Shima, 2000, |Wilder and Gértner, [1997]).
As an example, if we had a lexical item why :: w~ with just a w— feature
in its feature bundle, we could not have used this feature to check the w*
feature of our ripened which mango complex, because there is already another
accessible feature which could check it, namely the w™ feature in the bundle
of which. This constraint does not stop us from using the d~ feature on
which mango to check the first accessible d* feature of devoured, even if John
(which contains its own d~ feature) is elsewhere in the numeration. This
is because the two maximal connected subgraphs in question, which mango
and devoured, do not have a competing feature between the two of them.
We could of course have chosen in this same setting to use the d~ feature of
John instead; the structure of the numeration underdetermines the feature
checking relationships ultimately arrived at.

Our insistence on feature checking has given pride of place to lexical fea-
ture bundles. This is faithful to early presentations of Minimalism [Chomsky},
1995], but deviates from more recent approaches [Chomskyl, 2004 in which
Merge applies freely. It is easy to imagine converting the present system into
one where edges are freely drawn between lexical items. (Simply ignore the
features in our example, and draw edges willy-nilly.) In a free Merge system,
the role of filtering out ill-formed structures falls exclusively on the inter-
faces. As discussed in Kobele| [2014] and |Graf] [2017], the filtering behaviour
of simple interfaces (those which satisfy a condition called 'regularity’) can
be encoded as features on lexical items in exactly the way done here. In the
same way, the feature checking requirement on drawing edges can be pushed

This constraint, called the SMC in |Stabler| [1997], ensures that the typological predic-
tions of Minimalist grammars are responsible. See Graf’s contribution to this volume for
more details, especially regarding relaxations of and alternatives to this constraint.

12

out of core syntax and into the interfaces. In the second part of this paper,
we will do something quite similar; we will begin with the desired graphs, and
will extrapolate from them feature bundles that license their construction.

Our description so far has not touched on things like word order (how
do we pronounce a complex syntactic object), or derived syntactic structure
(how can we represent the structure of a complex syntactic object in a fa-
miliar way). Instead, all we have done so far is to indicate which features
have checked which others. Presenting syntax in this way disentangles the
specification of dependencies from structure building; two logically distinct
things. Establishing dependencies via feature checking is at the core of our
syntactic formalism, and this is logically distinct from what derived struc-
ture we decide to assign, or how we decide to linearize it. We will move on
to these questions soon enough (and they will be easy to answer, now that
we have this feature checking idea firmly in place).

1.3 Structure Building

In the previous section, we saw how features could be used to control the
addition of edges to our graphs. In this section, I turn to the topic of syntactic
structure building, and show that it can be thought of as a reflex of edge
construction. One reason for distinguishing between feature checking (or
edge construction) and structure building is that assumptions about derived
syntactic structure are largely orthogonal to the relationships between lexical
items that undergird them.

I will begin by identifying the meaningful information currently recorded
in our matching graph representations from the previous section, and consid-
ering how that information might be presented in different ways. The nodes
of our graphs have not been atomic, but have instead been structured objects
in their own right (towers with features on each level, and on the bottom a
lexeme). This additional structure in the nodes was used to specify which
of a lexical item’s features checked which of another’s features. This is the
fundamental information that needs to be conveyed. Instead of representing
this information on the nodes of the structure, we can instead encode this
information elsewhere. In addition to recording which features in the two
feature bundles check each other, we must also find a way to represent the
asymmetry between positive and negative features. It is convenient to en-
code this information onto the edges themselves. Edges are directed, from
the lexeme with the positive feature to the lexeme with the negative feature.
Three different choices about how to encode which features of lexical items
check each other are presented below.

13

While it is natural to want to ask, given three representational alter-
natives, which is the correct one, that misses the point hereﬁ All of the
following representations are equivalent to each other, in that they depict
the same underlying structure, much as polar and cartesian coordinates al-
low for describing the same points on the plane. If we were to have only
a single coordinate system, it would be easy to confuse properties of this
system with properties of the points they represent. Having multiple nomi-
nally different representations for the objects we are interested in allows us
to peer beneath the luster of our notation, and catch a glimpse of the reality
it clothes. Unlike the polar and cartesian coordinate systems however, where
one representation can prove at times drastically more concise than another,
the representational schemes below (with the exception of the set-theoretic
one, which is strictly dominated by the others when movement is involved)
are equally concise (up to a constant factor).

1.3.1 Dependency structures

One option is to simply label each edge with the position in the two feature
bundles of the features it checks. The edges are labeled with pairs of numbers,
indicating the position of the positive feature in the first, and the position
of the negative feature in the second feature bundle. The number indicating
the position of the positive feature is placed near the edge’s tail, and the
number indicating the position of the negative feature near its head. This is
depicted in ﬁgure Impressionistically, most dependencies involve either
a first positive feature or a first negative feature. It is therefore convenient
to leave the number "1’ on an edge implicit; the same structure with this

convention is depicted in figure .

A s U S N

which mango C ripened which mango C ripened
(a) All numbers (b) Implicit ones

Figure 8: Indicating connections between features via numbers on depen-
dencies

Focussing on the word which in figure we see that there are two

5Indeed, it is not at all clear that this question is even meaningful in this case, unless
one makes extremely strong assumptions about the nature of mental representations.

14

incoming edges, the first from ripened, and the second from C, and one out-
going edge (to mango). That its outgoing edge is the first incoming edge to
mango tells us that the first positive feature of which (n™) checked the first
negative feature of mango (n™). That its first incoming edge is the first out-
going edge of ripened tells us that its first negative feature (d~) was checked
by the first positive feature of ripened (d). And that its second incoming
edge is the second outgoing edge of C tells us that its second negative feature
(w™) was checked by the second positive feature of C (w'). The head of the
expression is identifiable as the node with no incoming edges, in this case C.

In this representational scheme, Merge amounts to adding a dependency
between two lexical items (with an appropriate label).

Osborne et al. [2011] note a similarity between Minimalism and depen-
dency grammar. The structures we presented here are dependency struc-
tures, very close to those used in Word Grammar [Hudson, [2010|, which
allow a single node to have multiple incoming edges (multiple dominance);
precisely what is demanded when movement is in the picture. What distin-
guishes these dependency structures from those of Word Grammar (or other
traditions) is the content of the labels on edges. In Word Grammar, these
labels indicate grammatical relations (such as subject, modifier, or object),
whereas here they are indicate which pair of features the edge connects. If
certain formal assumptions on feature bundles are imposed, such as a pro-
hibition on having multiple identical features in one feature bundle, then
feature names can replace pairs of numbers as the labels on edges. In the
context of further common assumptions, we might imagine that there could
be a correspondance between feature names and grammatical relations; for
example, a case feature could be thought of as a generic argument relation,
while a topicalization feature a TOPIC operation, etc. This would bring the
formal difference between Word Grammar and Minimalism to a minimum,
making Minimalism seem like a derivational approach to Word Grammarm

"A substantive (as opposed to a formal) difference is that Word Grammar makes use
of a richer set of dependency labels, such as subject and object, whereas Minimalism
deliberately attempts to decompose these into the label I have called here argument, which
is interpreted as either subject or object depending on the lexical item to which it points:
pointing to an AgrS means it is a subject, to an AgrO an object. Similarly, Minimalism
makes use of many more covert words than does Word Grammar. Lexical decomposition
as discussed in section [2Z.T.1] allows us to make sense of this difference — the covert words
of Minimalism are exactly those which emerge from the whole words of Word Grammar
by the lexicon optimization process of lexical decomposition.

15

1.3.2 Mirror theory

The information contained in matching graphs can be presented in other
ways as well. The following representation makes heavy use of node layout:
vertical to indicate which of two nodes contained the negative, and which the
positive feature, and horizontal to indicate which feature was checked. Given
a node m, it is depicted as being above all other nodes which its positive
features are checked by, and these ’daughters’ are ordered from left to right
as per which of this node’s features they checked. The incoming edges to a
node are also ordered from left to right to indicate which feature each edge
links to which other. This is represented in figure [0

C

/
ripened >
\
which

\
mango

Figure 9: A layout-based representation

Focussing again on the word which in figure |§|, it has one daughter (i.e.
one outgoing edge), mango, indicating that its first (and only) positive feature
is checked by a negative feature of mango. The word which has two parents
(two incoming edges), the leftmost one, ripened, accordingly checks its first
negative feature, and the second one, C, its second negative feature.

In this representational scheme, Merge amounts to adding an edge be-
tween nodes.

This representation is at the heart of Brody’s Mirror Theory |Brodyl
2000], which represents in addition whether an edge is a morphological word
building dependency, co-opting linear order to encode this information, and
imposing an upper bound of two on the number of outgoing edges a node
may have (which amounts to placing an upper bound of two on the number
of positive features in any lexical feature bundle).

1.3.3 Bare phrase structure

Our third representation mixes the original ’complex node’ matching graph
representation with the layout based one from figure[9] The individual pos-
itive features of a word are represented as independent nodes, which I label
with a circle 'o’ for convenience. Their linear order in the feature bundle is

16

represented via the dominance relation. By virtue of splitting features off of
nodes, this representation is able to restrict the number of outgoing edges
of any node to a maximum of two. The number of positive features on each
lexical item allow us to reconstruct which circles belong to which words in
this structure, thus freeing up linear order to be used for other purposes.

[}

/

[}
VRN

[0)
2N
ripened o

/ N\

which mango

C

Figure 10: Positive features represented as nodes, order via dominance

Of course, this structure is nothing more than the kind of constituency
structures familiar in modern transformational syntax, with chains repre-
sented via multiple dominanceﬁ Each node beyond the first in the projection
of a lexical item "hosts’ exactly one of its positive features. This constituency
structure was already implicit in the dependency structure from the previous
section. All we did was rearrange the information contained in the depen-
dency structure. Whereas the dependency representation forces us to keep
track of the order of the dependencies a lexical item’s positive features enter
into, this order information is encoded in a constituency tree via the domi-
nance relation. Note that, of course, we can go from a multiple dominance
structure of this sort back to a matching graph by ’squishing together’ the
nodes projecting from the same head. We need to remember to encode the
immediate dominance relations among these nodes as precedence relations
in the lexical feature bundles.

In this representational scheme, Merge amounts to adding a new root
node, and two edges from this node to the roots of the structures merged.

Finally, if we assume that each time a lexical item is selected from the
lexicon it receives a unique index, we can encode the phrase structure tree
in figure [10|in the set theoretic way recommended by |Chomsky! [2000|, and
(following |Collins| [2002]) without labels. Each internal node is interpreted
as an instruction to form the set of its two daughters. This gives us the set

8The foundational reference to multi-dominant syntax in Minimalism is (Gértner| [2002].
Kracht| [2001] compares the formal properties (and intertranslatibility) of copies, multiple
dominance, and traces as representations of the derived structures of movement.

17

theoretic object below:

{{C, {ripened;, {whichy, mango; } } }, {whichy, mango; } }

Relating this back to the previous section, where matching graphs were first
introduced, we see that the edges connecting matching feature pairs indeed
represent Merge steps, and can in fact be viewed as constructing sets.

1.4 Interfaces: Linearization

In the last section I tried to show that the matching graphs we obtain by link-
ing lexical features together just are the tree-like structures with movement
we are familiar with, in disguise. Thinking of representations in terms of
the information they encode provides us with a different perspective on how
to understand questions about and arguments for one or the other represen-
tation. In addition, different but informationally equivalent representations
can suggest different but equally valid perspectives on grammaticality; the
matching graph emphasizes that grammaticality can be viewed as verifying
that features of lexical items were checked off against each other in the right
way.

Of course, these abstract structures have very little contact with the rich
empirical data that we would like to account for; they account for perhaps
the number and identity of words (i.e. lexical items) in sentences. While
this is already of some interest, it is not of that much interest: on alligator
of anaconda the road the side the ate and the anaconda ate the alligator on
the side of the road are identical w.r.t. the numerosity of their words, but
one is word salad, the other an everyday occurrence in Florida. Much more
interesting would be if we could account for not only the numerosity, but
also the linear order of words in sentences [l

As we have shown in the previous section how to move from dependency
structures to (multiple-dominance) trees and back, we can describe how to
linearize our structures by specifying how to linearize (multiple-dominance)
trees. There have been many suggestions as to how to spell out (linearize) an
unordered multiple dominance structure, or equivalently, a tree with multiple
copies. It is often convenient to attempt to solve new problems by adapting
solutions to old problems. As we know how to linearize ordered trees, we
can try to construct ordered trees from an unordered MDS. To do this, we
must solve two independent problems.

9We would also like to account for some aspects of sentence meaning, but that is too
advanced for the present chapter. [Kobele| [2006) 2012] shows how to apply the |[Heim and
Kratzer| [1998| approach to semantics to Minimalism in a directly compositional way.

18

1. turn an unordered MDS into an unordered tree
essentially: choosing which chain link to pronounce

2. turn an unordered tree into an ordered tree
essentially: how to order sisters

There are many ways of solving these two problems, some of which corre-
spond to proposals in the linguistic literature. I will begin with what I take
to be the simplest popular answers to these questions, before generalizing
these answers and showing how they can be visualized in terms of properties
of lexical feature bundles.

1. each multiply dominated expression is to be exclusively pronounced in
its structurally highest position

2. specifiers are pronounced before heads which are pronounced before
complements

1.4.1 Ordering

The simple answer to the ordering problem (SPEC-HEAD-COMP) treats
every lexical item (in every language) the same; you are pronounced to the
left of the expression that checks your first positive feature, and to the right
of all expressions that check your other positive features. Furthermore, an
expression checking a later positive feature of yours will be pronounced before
(i.e. to the left of) an expression checking an earlier positive feature of yours.

high spec a
left

7+

right x+

complement word

Figure 11: The lexical item word :: xT.y".z*.a=.b".c™, and the structural
and word-order properties of its governees

It is common to analyze German as having “complement-head” order in
the verbal and tense domains, but “head-complement” order elsewhere. This
'mixed’ word order property of German, if we accept it at face value, means
that we cannot hold onto this simple answer to the ordering problemm
Instead, German word order properties are naturally stated by reference
to particular lexical items (verbs and auxiliaries require Comp-Head order,
others Head-Comp order). We could implement this lexical item-dependent
word order variation at the featural level, by specifying for each positive
feature on each lexical item, whether its checker should appear to the left or
right of the head.

complement |—iht n+

Figure 12: Feature-based word order variation in German

This information needs to be recorded somehow. It is simple to attach
linearization instructions to the individual features. We can write Tx for
a positive feature which wants its checker to be on its left, and x* for a
positive feature which wants its checker to be on its right (so the plus is on
the side that the dependent should be linearized on). With this convention,
we can write lexical items for German words that disagree about what side
their complements should appear on:

Table 1: Putting linearization under lexical (featural) control
Head-Comp ‘ Comp-Head
jeder :: n¥T.d" Xk~ | lachen :: Td.V~

100f course, we could keep this simple answer if we made our analysis more complicated,
taking at least one of the two word orders to be the result of additional movements.

20

1.4.2 Chains

The simple answer to the multidominance problemlﬂ again treats every lex-
ical item the same; it and its maximal projection are pronounced in the
position checking their last feature. Because all dependencies entered into
by lexical items are determined by their feature bundles, we can view this
pronunciation scheme in terms of the features in a lexical item’s feature
bundle, as depicted in figure [I3]

pronounced

not pronounced

zt

il

not pronounced

y+
xt

word

Figure 13: The lexical item word :: xT.y".z*.a~.b".c™, and its pronuncia-

tion

There are two obvious ways of generalizing this. The first way is parallel
to the way we allowed each lexical item to determine for itself the pronuncia-
tion orders of its dependents above. This amounts to allowing a lexical item
to specify which of its features it will be pronounced in. Figure [14] presents
a simplified picture on the difference between wh-movement and wh-in-situ
languages, where both wh-strategies are viewed as syntactically identical,
with the difference residing solely in the choice of chain link to pronunce.

A second generalization of copy spellout takes control away from the lex-
ical item itself, and moves it to the interaction of its governing heads. This
seems most reminiscient of actual practice, where a governing head which can
support pronunciation is said to have an EPP feature. The intuition under-
lying this generalization is that dependencies able to support pronunciation
pull a maximal projection up from its default base positionH Pursuing this

1 This problem is not particular to the multidominance representation. It appears in
exactly the same way with multiple coindexed copies.

12 A particularly fine-grained version of this idea comes in the form of complexity filters
|Koopmanl, 2014], where each position may place restrictions on not only whether it can
host an overt expression but also on the syntactic and prosodic shape of this expression.
Kobele| |[2011] investigates conditions under which the addition of complexity filters is

21

not pronounced pronounced

wh- |—% wh-
k- not pronounced
d A
n+* not pronounced n+ not pronounced
shenme which
(a) Chinese (wh-in-situ) (b) English (wh-movement)

Figure 14: Cross-linguistic variation in pronunciation height in English and
Chinese

metaphor, a dependency is called strong just in case it supports pronuncia-
tion (i.e. is able to pull up a maximal projection), and is weak otherwise. In
contrast to our previous generalizations, which were statable in terms of the
properties of a particular lexical item in isolation, we cannot predict on the
basis of a particular lexical item in which of its negative feature positions it
will ultimately be pronounced - its ultimate pronunciation position is only
determinable on the basis of properties of the structure in which it finds
itself. When multiple positions compete for hosting the pronounced version
of the phrase, we will say that the (structurally) highest one wins (that is,
the one which checks the latest feature). If no position is able to host the
phrase, it is pronounced in its first negative position.

We can indicate on a feature whether it is able to support pronunciation
or not by adding a tilde above the name of a feature which does not support
pronunciation - in other words, weak features are marked as such with tildes.
This is shown in table 2

Table 2: "EPP’ notation
Weak ‘ Strong

X, T, % ‘ xT, Tx, x

Our first generalization (where each lexical item decides for itself which
of its negative features will host its pronunciation) amounts to allowing only
negative features to be weak. The last strong feature in a feature bundle is

admissible in the Minimalist grammar formalism.

22

the one where the lexical item’s maximal projection will be pronounced. If all
features are weak, it will be pronounced in the first one. This generalization
would be able to capture a situation where a particular position was able to
host expressions of a certain type, but where some expressions of that type
were always pronounced lower than that position.

Our second generalization (where the ultimate pronunciation site of a
maximal projection is a global property of the structure) amounts to allowing
only positive features to be weak. The maximal projection of a lexical item
will be pronounced at the position of the last of its features checked by a
strong feature, or in the position of its first negative feature if all of its
negative features are checked by weak ones. This generalization would be
able to capture a situation where some words allow overt movement to their
specifiers, but other words require the same expressions to move covertly.
Some people think of case in English as working in this way. Clearly, all DPs
in English can be pronounced in the position which assigns them case (esp.
nominative case). However, many people analyze objects as being in their
in-situ positions, despite being assigned case by a higher head. This could
be accounted for by assigning a strong positive case feature to the T head,
and a weak positive case feature to (say) the v head.

Of course, we could combine these generalizations, allowing strength and
weakness to be assigned ad libitum in feature bundles. The strong/weak
negative features in a lexical item’s feature bundle indicate where a lexical
item is able to be pronounced. The strong/weak positive features in a lexical
item’s feature bundle indicate where a lexical item is able to overtly host
something. Then the maximal projection of a lexical item will be pronounced
in the highest of its strong negative features which is checked by a strong
positive feature. The question of what to do in case none of a lexical item’s
strong negative features are checked by strong positive features is left open
by this formulation, but could be naturally resolved either by causing such
a derivation to crash (at the interface), or by defaulting to some designated
position (say, the first negative feature, regardless of strength).

Many other pronunciation schemes are possible. The interest of ones
based on strong/weak features is that they are lexicalizable - they can be
formulated in terms of lexical feature bundles. As discussed in section [T.2]
features can be thought of describing the filtering effects of regular inter-
face maps on freely Merged structures. From that perspective, lexicalizable
pronunciation schemes reflect local (as opposed to global) interface compu-
tations.

23

1.4.3 Informational equivalence

As the matching graphs over feature towers (and numbered dependency
structures) are informationally equivalent to multiple dominance structures,
one should be able to linearize these structures directly. Indeed we can, and
in a simple and straightforward way. The twin problems of ordering and
chains emerge in this context again, with exactly the same character. In-
deed, the proposals in sections [1.4.1] and [1.4.2| are representation agnostic;
they are stated in a way that is independent of the representation chosen, and
the ideas therein can be applied without change to these other structures.

When linearizing dependency structures, one must say something about
how to determine the relative order of the immediate dependents of a parent.
This requires the postulation of some asymmetry between the dependents,
to provide a scaffolding for the desired asymmetry in linear order. This issue
does not arise in the context of (binary branching) constituency structures,
as the constituency of the structure itself imposes such an asymmetry on
dependents. The structures used here, the matching graphs over feature
towers and the numbered dependency structures, also impose an inherent
order on dependents. In the case of the matching graphs over feature towers,
it is the position of the features in the tower, and in the case of the numbered
dependency structues, it is the number of the dependencies. Both of these
(and also the constituency of the constituency structures) ultimately reduce
to the order of features in lexical feature bundles.

2 Decomposition as a discovery procedure

The previous sections have introduced a formalism in which we may write
Minimalist analyses. The formalism was presented as a system for construct-
ing links between lexical items. The resulting matching graphs over feature
towers, while initially unfamiliar, are actually equivalent to the structures
involving movement that we normally use. While links between lexical items
could in principle be drawn in many ways (e.g. ’'if your graph has an even
number of edges, remove half of them at random, otherwise make two ad-
ditional copies of each edge and add a new edge at random’), the system
we have been exploring lezicalizes the link drawing procedure, by putting
features on lexical items. This is a useful starting point, although we can
imagine ways of relaxing thisE These dependency-establishing features on

13We might allow links to be drawn, without any syntactic features involved at all,
between two items which are in a semantic function-argument relation (for example, a
verb and its argument). We would have to keep track of the semantic type of expressions,

24

lexical items can also be exploited to deal with linearization (directionality of
selection and chain link pronunciation), as detailed in the previous sections.
In this section I use the system we have developed to reconstruct familiar
analyses of basic phenomena. I will continue to emphasize the role which
can be played by lexical feature bundles in this endeavor.

Section begins with a simple, whole-word analysis of the English aux-
iliary system. While simple, this analysis misses generalizations. We see that
these missed generalizations manifest themselves as redundancies in the lexi-
con. Section [2.1.1|introduces the formal mechanism of decomposition, which
shall be used to eliminate lexical redundancies. Decomposition amounts
to breaking a single head into two, and so we need to introduce a way of
reassembling our original words from lexical items representing word parts.
This is the topic of Section which uses spanning [Brody [2000], Williams
[2003], |Svenonius [2016] to allow syntax to construct complex words. Section
applies decomposition to the original whole-word analysis, resulting in
a textbook Minimalist analysis.

Section [2:2] expands the scope of our analysis, introducing more tenses
and modals (section , negation and do (section and a discus-
sion of do-support (section and repair operations in general. This
section introduces lexical graphs, which are a graphical presentation of a lex-
icon. Lexical graphs make information about the derivational possibilities
of lexical items explicit in a way that permits easy visualization of analyses.
This makes for a simple way of reasoning about, modifying, and comparing
analyses.

Section [2.3] again expands the scope of the previous analysis, this time
by introducing raising to subject (section , to object (section ,
and passivization (section. The analytical development proceeds again
entirely by using lexical decomposition to reduce redundancies in the lexicon.
Despite the myopicity of the analytical strategy, the ultimate analysis is again
completely canonical.

and whether a particular semantic argument position has already been saturated, but this
is certainly conceivable. Another option might be to allow certain links to be drawn where
only one of the involved lexical items has any features. For example, a lexical item might
have an EPP feature, and so we might draw a link between it and (perhaps even the
closest) something else. One can imagine many more possibilities. These two have been
discussed in the literature. The first under the rubric of reducing c-selection to s-selection,
and the second is I think a fairly common way of understanding agreement (where a probe
has unvalued features, and is searching for a goal where it can get values from).

25

2.1 Investigating English auxiliaries

As a simple case study, consider the English auxiliary system. Imagine a
language learner (or perhaps just a linguist) being exposed to sentences like
the following.

1. John eats.

2. John will eat.

3. John has eaten.

4. John will have eaten.

5. John is eating.

6. John will be eating.

7. John has been eating.

8. John will have been eating.

Assume further that the linguist has decided that the dependencies for sen-
tence [§ are as in figure

John will have been eating

~_

Figure 15: Dependencies for sentence 'John will have been eating’

From these dependencies, we can reconstruct the lexical items in table [3]
We do this by assigning each edge a unique name, and putting the positive
(resp. negative) feature with that name in the source (resp. target) lexical
item’s feature bundle.

Table 3: Lexical items extracted from the dependency structure in

John::a= b= will:: cT.bt.s™
have :: dt.c™ been :: eT.d™
eating :: at.e”

26

After extracting lexical items from sentences [I[] — [§] we have multiple
"copies’ of certain words, which differ only in the names (but not the types)
of features in their feature bundles. For example, there are eight (!) different
copies of John, four of eating, three of will, and two each of eaten, has,
and been. (This is because each time we reconstruct lexical items from a
new dependency structure, we choose globally unique names for the edges.)
We can unify these copies into single lexical items by renaming the features
involved across the whole lexicon@ For example, we might decide to rename
the first feature of each of the John lexical items to d—, which would force
us to replace all features with name a with the name d, among others. After
this unification procedure, we are left with the lexicon in table [4

Table 4: Lexical items after unification of features

John ::d™ k™ eats :: dt.kt.s™
will :: v kT.s™ eat :: dT.v

has :: perft.kt.s™ eaten :: d".perf™
is :: progT.kT.s” eating :: dT.prog™
have : : perft.v™ be :: progt.v™

been :: prog™.perf™

This grammar is perfectly capable of deriving the sentences (with the ap-
propriate dependencies) we were given originally. However, it systematically
misses generalizations: although we know (as English speakers) that there is
but a single verb, eat, which is appearing in its various forms in this lexicon,
this fact is not captured in the grammar. One way to make this intuition
more precise is to appeal to the rate of growth of our lexicon as we add more
and more open class items. In order to add a new intransitive verb to our
grammar we would need to add four separate lexical items (five, if we had
included the past tense), one for each cell in its paradigm.

This is a familiar tension, and has an familiar resolution: a morphological
module systematically constructs all of the lexical items needed from a single
input form. This is possible because the lexical items which we need to add
to the lexicon in order to capture the distribution of a novel (intransitive)
verb V are not arbitrary, but have a characteristic form, shown in table

Thus the redundancy in the lexicon (for each intransitive verb we have

This is not innocuous, but involves a substantive hypothesis to the effect that the lex-
ical items so unified are in fact different tokens of the same lexeme. We would presumably
not, for example, want to unify bank :: ¢ and bank :: j in the sentence “The new bank is
on the bank of the river.”

27

Table 5: Lexical items needed for an intransitive verb

V-pres :: dT.kT.s™ V-past :: dT.kT.s™
V-prog :: dT.prog~ V-perf :: d*.perf™
V-base :: dT.v™

multiple lexical items) can be eliminated by postulating lexical redundancy
rules |[Chomsky, 1965, Jackendoff] |1975|, here rebranded as a presyntactic
morphological module. This also accounts for the productivity of the lexicon
(upon learning a novel intransitive verb we add multiple lexical items).

In the remainder of this chapter we explore a different (and canonical
within the Minimalist tradition) approach to the redundancy in table |4} one
which exploits the structure in feature bundles.

2.1.1 Decomposition of Feature Bundles

A common pattern in science is to identify commonalities across phenomena,
factoring out a description of the phenomena into a single theory accounting
for the commonalities, together with theories accounting for the individual
differences. Quod inferius est sicut quod est superius. We can identify com-
mon patterns in lexical items, and then factor out these common patterns
into new lexical items. This will allow us to express generalizations about a
redundant lexicon in the language of syntaz.

Given a lexical entry word :: «a, we can divide a up into the following
parts:

e the part that occurs before the first negative feature
e the first negative feature itself
e the part that occurs after the first negative feature

In a useful lexical item (i.e. one which can be used in a convergent
derivation), the part after the first negative feature will consist exclusively
of some number of further negative features.

So let af8.x~ .y be a lexical feature bundle with «f its precategorial part
(one or both of @ and S may be empty). We can decompose this feature
bundle into the following two (I assume that the feature w is fresh; i.e. no
other lexical item has a feature of that type): a.w™ and wt.8.x~.y. That is,
we split the feature bundle between the o and the .

28

/N
X B X
N \
D X W
/N /N
@ X «@ W
(a) X-bar trees (b) Matching graphs

Figure 16: Visualizing feature bundle decomposition

u:: ax
w::aB—=< vi:ixt.j
udbv=w

Figure 17: Morphemic decomposition

From a linguistic perspective, this amounts to saying that what we used
to think of as an XP (remember that word is of category z) is really two
phrases: XP with complement WP. We can view this process in terms of the
structures we would construct in figure

As can be seen in the figures, the arguments of the original feature bundle
are now distributed across two feature bundles. We want, however, to factor
out redundancy not only within feature bundles, but within the relation
between phonological forms and feature bundles. Consider the pair of lexical
items in table [6l

Table 6: Forms of (auxiliary) have
has :: perf™.kT.s™ have :: perft.v™

Not only do both of these lexical items begin with a perf™ feature, but
(we know) they are all forms of the auxiliary verb have. This generalization
is, however, not expressed in the language of our theory (i.e. in terms of
our lexicon). We would like to factor out the auxiliary from its endings.
Abstractly, we need a decomposition rule as shown in figure This rule
allows a lexical item to be split into two; the feature bundle is broken into
two as per the discussion above, but now the original phonological form of
the lexical item (w) is factored into two pieces (u and v). These two new
lexical items no longer give us the same structures we would have created
with the original one, as now there are two heads (u and v) instead of just one

29

(w), and in addition all specifiers in « intervene between these two heads. In
order to remedy this problem, we must allow v and v to combine to form w.
We do this in two steps. First, when merging expressions headed by u and
v respectively, we combine the phonological material from both heads, and
put them together into just one of the two. Second, we record that these two
heads are not pronounced separately as u and v, but are rather pronounced
together as w. This is done in two ways. First, in the lexical entry for v (the
selector), we record (by underlining the relevant feature) that it enters into
a special relationship with the head of its selected argument (x*). Second,
we record that the lexical items u and v are jointly pronounced as wE This
latter is, in linguistic theory, the provenance of morphology. It is simply
represented here as a finite list of statements (morphology can be thought
of as a way of compressing this list, or alternatively a way of identifying
and expressing rule-like generalizations). Using this decomposition rule, we
factor out the lexical item have :: perf'.y~ from the two original have-
forms in table [6] obtaining the lexical items in table

Table 7: Factoring out have

have :: perft.y~ W ::ytyo
Pres :: yT.kt.s™

T <

have @ Pres = has have ® v¥ = have

The lexical item v¥ :: y*.v~ simply selects something of category y, and
turns it into something of category v. Such a lexical item could be replaced
by a partial ordering statement of the form y < v asserting that a negative
feature y~ can be used to satisfy a positive feature v (see Bernardi and
Szabolcsi| [2008]).

It is convenient to represent a morphological word forming edge between
nodes differently from non-morphological word forming edges. I will use a
dashed edge in all of our representational schemes to indicate this (it is re-
dundant information, as it is reconstructable from the fact that an underlined
feature was checked), as in figure .

151t would make sense as well to, upon combining v and v, to replace them with w. I
prefer, when doing theory construction, to factor out logically distinct steps: syntax will
then assemble complex heads, and these complex heads will be interpreted elsewhere. Of
course, when actually using this theory to model performance, these logically distinct
steps can and perhaps should be interleaved with one another.

30

S
S s
/ \ [)
ok s Sl y Pres
/ \\ Pres eperf /N
Pres y have ok have
/ N\ |
have eperf eperf

Pres have

Figure 18: Visualizing morphological word forming dependencies

2.1.2 Decomposition and Generalization

The entire point about this sort of lexical decomposition can be summarized
in the following way:

lexical decomposition allows us to express regularities in the lex-
icon as new lexical items

If we measure the size of a grammatical description in terms of the number
of features used (i.e. the sum of all features on all lexical items), then lexical
decomposition can be used to reduce the size of our lexicon, by reifying
repeated feature sequences as separate lexical items. Consider the set of
lexical items in table Bl

Table 8: Some tensed lexical items

will 2 vt kT.s™ has :: perft.kt.s™
is :: progT.kT.s™ eats::d".kt.s”

Each of these four lexical items has three features, giving us a total
lexical size of 12. However, all four lexical items end with the same length
two sequence of features: kT.s~. This expresses that they check the case of
a subject, and are a sentence; in even more naive terms each lexical item
demands that the subject moves to its specifier. We can decompose our
lexical items so as to factor this common feature sequence out, assigning it to

31

a lexical item named AgrS. This gives rise to the lexicon in table [0} We need
as well one morphological interpretation rule for each combination of lexical
item with AgrS; as AgrS does not contribute to pronunciation (because we
are not taking agreement into account). I abbreviate these rules as a single
rule o @ AgrS = a.

Table 9: Factoring out the feature sequence k*.s™

will 22 vte™ has :: perft.t™
is :: progT.t™ eats :: dT.t~
AgrS :: tTkt.s™ a®AgrS=a

This lexicon has five lexical items, but only eleven features. We can see
that decomposition has reified the repeated feature sequence as a new lexical
item AgrS :: tT.kT.s™, which expresses the generalization that subjects
move to a specifier position at (or above) TP.

The desire to capture regularities in the lexicon is not limited to the
transformational grammar tradition, but is common to nearly every linguis-
tic endeavour. The tradition of head-driven phrase structure grammar |Pol-
lard and Sag), |1994] makes extensive use of type hierarchies to express lexical
regularities (see Flickinger [1987], [Meurers [2001]), where recurring patterns
in lexical entries are factored out into more abstract lexical entries. The
left-over concrete lexical items are then connected to the abstract ones in
an inheritance hierarchy, which specifies which information can be added to
the concrete lexical items. Although the mechanisms involved are very dif-
ferent, one can see lexical decomposition as presented here as the Minimalist
version of type hierarchies with inheritance being implemented via (complex
head forming) merger. The graphical presentations of the lexicon as shown
beginning in figure [20| can be understood as type hierarchies.

2.1.3 Complex heads

Once we move from whole word syntax to one which manipulates sub-word
partsE we must confront two questions.

1. how do the heads which constitute a single word get identified?

2. where does the word corresponding to multiple distinct heads get pro-
nounced?

18Tn current parlance, this would be described as moving from a pre-syntactic morpho-
logical module to a post-syntactic one.

32

The answer to the first question we gave implicitly in the previous section:
two heads are part of the same word just in case one selects for the other
with an underlined feature. This is a version of a spanning approach to
the syntax morphology interface Brody| [2000], Williams| [2003], Svenonius
[2016]. There are many possible answers to the second question. Following
Brody [2000|, we say that a word is pronounced (relative to other words)
as though it occupied the position of the highest of its heads (with respect
to c-command) with a particular property (and in the lowest of its heads, if
none have that property). This property is called strength in Brody’s work,
but is formally merely an ad hoc property of lexical items. To distinguish
between strong and weak lexical items, we write strong lexical items with
two colons separating their phonological and syntactic features, and weak
ones with one (as in table [10)).

Table 10: Strong (left) and weak (right) lexical items
Strong Weak

u::a v:p

Regular head movement is what happens when all lexical items are
strong. More spell-out possibilities emerge when we extend the set of pos-
sible strengh values. |Abels| [2001] proposes adding a third value undeter-
mined. An undetermined head behaves as does its morphological word
forming daughter; if the daughter is strong, the undetermined head behaves
as though it were strong. If the daughter is weak, the undetermined head
behaves as though it were weak. Arregi and Pietraszko| [to appear| propose a
strength value we might call sticky, which holds the morphological word in
place, unless it is pulled up by a higher sticky head. In the setting of [Arregi
and Pietraszko| all heads are either sticky or strong, and so a morphological
word will be pronounced either in the highest sticky head, or in the highest
head, if there are no sticky heads. Note that this is the same as the proposal
of Brody| (with sticky replacing strong, and strong replacing weak), ex-
cept that the ’default’” spellout position (i.e. the spellout position without
any special sticky /strong nodes) is high, not low.

There is a deep similarity between the role of strength in determining
the spell-out position of a complex head, and the role of (the formally un-
related but similarly named) strength in determining the spell-out position
of a movement chain. This is because the two problems are fundamentally
the same: there is an element (either the complex head, or a phrase), and
multiple different positions in which it can be pronounced. Crucially, in both

33

cases, all of these positions are totally ordered, which permits the use of no-
tions like "highest.” It seems unparsimonious to implement the same solution
to the same problem in two different ways (strength; on lexical items and
strengthg on features). There are two obvious ways to approach a unification
of mechanisms, depending on which notion of strength we reduce to which
other. Reducing lexical strength to featural strength means that we identify
the strength of a lexical item (for the purposes of complex head spellout)
with the strength of one of its features. It is most natural to identify this
feature as the one checked in the service of forming the complex head. So the
relevant feature of the lowest, root, position of the span is its first negative
feature, and those of the higher positions in the span are their first positive
features. Reducing featural strength to lexical strength means reconstruct-
ing featural strength on the basis of lexical strength. As a lexical item has
but one value for its strength, but potentially many features, this entails
that all features of a given lexical item would have the same strength value.
While decomposition ensures that we can refactor lexical items so that each
positive feature is associated with its own head, the same cannot be done for
the negative featuresﬂ Thus, reducing featural strength to lexical strength
would make useless the option of controlling chain spell-out with negative
features.

2.1.4 Decomposing Auxiliaries

We thus want to express generalizations about our language in terms of our
theory, and this we will do via decomposition. We want to compare lexi-
cal items to one another which share feature prefixes/suffixes and (ideally)
similar phonologies. We should then decompose, and unify, decompose, and
unify, until further decomposition does not achieve any succinctness gains
However we will here simply note en masse that the eat verbs begin with
the feature d*, and decompose them. The result is shown in table

Note again that the original bare eat form has also been decomposed,
leaving behind a ’dummy’ lexical item (named v") which serves to simply
change category. This is important, so that no new forms are derived: de-
composition by itself does not change the language of the grammar. Were
we not to do this, the newly decomposed eat lexeme would continue to have

1" The obvious strategy of decomposing betwixt negative features runs afoul of the prob-
lem that it makes more features accessible than were originally.

18This is easier said than done! Marina Ermolaeva is exploring how MDL can be used to
guide a search for the ideally decomposed lexicon. Preliminary results have been presented
in [Ermolaeval [2020].

34

Table 11: Lexical items before (left) and after (right) decomposition of eat

eat :: dt.v—
eats :: dt.kT.s™
eaten :: dT.perf™

eating :: dT.prog™

category v, just as would the lexemes

vV E.v_
Pres :: VT kt.s™
Perf :: VT .perf™
Prog :: V' .prog™

eat :: dt.V™

eat vV — eat
eat @ Pres — eats
eat @ Perf — eaten
eat @ Prog — eating

be and have. This would allow us to

derive the ungrammatical “John will have been having been eating”.
We next do the same with the forms of be[™] This is shown in table [12]

Table 12: Lexical items before (right) and after (left) decomposition of be

be :: progt.v™
is :: progT.kT.s™
been :: prog™.perf™

X . +

viiixtov
Pres :: xt . kt.s™
Perf :: x*.perf™

be :: progt.x~

be ® v* — be
be @ Pres — is
be @ Perf — been

Comparing the results of decomposing eat on the one hand and be on
the other, we see that we have three pairs of abstract lexical items (those

named v®, Pres, and Perf) which have

identical feature bundles but for the

names of their first features: V versus x. There are three basic possibilities
for systematically relating any of these pairs:

1. identify them, thereby unifying V and x (here I have renamed z as V)

9There is a deep issue here, regarding how we are to know that is is a form of be. There
has been computational work on identifying morphological paradigms [Lee, |2014|, which

might very well be of use here.

35

before after
v<ixtvT
A ﬁ.v_ VAR e
Pres :: xt kt.s™
Pres :: vVt kt.s™ || Pres :: V. kT.s™
Perf :: xT.perf™
Perf :: VT .perf™ || Perf :: V'.perf™

2. decompose the first into something else plus the second, thereby as-
serting that V <z

before after
v xtvT v xt v
RS ﬂ.v‘
Pres :: xt . kt.s™ || Pres :: xT.kT.s™

Pres :: vt kt.s™
Perf :: x".perf™ || Perf :: x*.perf™
Perf :: V' .perf™
xV i vtxT

3. decompose the second into something else plus the first, thereby as-
serting that ¢ <V

before after
v xt v
o ﬁ.v‘ Wi vty

Pres :: xT kt.s™
Pres :: vt kT.s™ || Pres :: vt kT.s~
Perf :: x.perf™
Perf :: V" .perf™ || Perf :: V.perf™
VX xtvT

Pursuing options 1 or 3 would collapse necessary syntactic distinctions,
leading the grammar to generate sentences of the form: {John will be
(being)* eating}. The correct option is 2. This can be determined in a
less intuitive manner by identifying cycles in selection (or the lack thereof)
in the lexicon: a V can be turned into a prog (via ing), which can be turned
into an x (via be), but an x cannot become a V.[QEI Adding this information
(as an empty lexical item) to our lexicon gives us the lexicon in table

20This is unfortunately quite a bit more complicated (see Ermolaeval[2020]). An x could
in principle become a V, if it were embedded as a clausal complement, or as a relative clause
modifier of a DP complement, of a higher verb.

36

Table 13: Lexical items after decomposing be and eat, and asserting that
V<zx

xV i vhx— Pres :: xT.kt.s™
v xtyT Perf :: xT .perf™

Prog :: V'.prog™
eat :: dT.V™ be :: progt.x~
eat & xV @ Pres = eats be @ Pres = is
eat & xV @ Perf = eaten be & Perf = been
eat ® x¥ @ v = eat be ® v* = be

eat @ Prog = eating

A similar issue arises upon decomposing have, which we did back in table
We see again that we have two pairs of very similar looking lexical items
(v¢ :: xt.v~ and v :: yT.v~ on the one hand, and Pres :: x".k".s™ and
Pres :: y".k".s™ on the other). Wanting to relate these lexical items, we
have the three familiar choices: identify z and y, set < y, or set y < .
Allowing y~ to satisfy a x* feature would allow us to derive ungrammatical
sentences like “John will have (had)* eaten.” Thus, we cannot identify z and

Y, nor can we set y < .

before after
Wyt vyt
v oo E.v‘ o
Pres :: yT.kT.s™ || Pres :: y".kt.s™
Pres :: x".kt.s™ o
y<ooxty”

Table 14: Lexical items after decomposing be, eat, and have, and asserting
that V <z and z <y

oo ﬂ.v_ yisxtyT xV i vtx— eat :: dt.v~
will :: vt.kT.s™ have :: perft.y~ be :: prog™.x™ John :: d™ .k~
Pres :: y".k*.s™ Perf :: x".perf~ Prog:: VT .prog™

This lexicon has 24 features in it (18, if we discount the isa lexical items),
whereas the initial lexicon (prior to decomposition) contained 26 features.

37

Table 15: Morphological equations for table [14]

have @ Pres = has be @ y* @ Pres = is eat @ x¥ @ Pres = eats
have ® vW = have be®y* @ v =be cat &xV &y @V = eat
be ® Perf = been eat @ xV @ Perf = eaten
eat @ Prog = eating

We have thus achieved a (small) compression. However, the important dif-
ference between these two lexica lies in their behaviour as more words are
added to them; novel intransitive verbs contribute just two features to our
final lexicon, but 9 features (distributed over four lexical items) to our initial
one.

2.2 More on English auxiliaries

Our analysis of sentences [I] — [§] culminated in the set of lexical items pre-
sented in table [I4] together with the morphological equations in table [T5]
Sets of lexical items, although the objects in terms of which analyses are
presented, are not the most perspicuous objects for communicating these
analyses. Linguists typically present structures in order to communicate
their analyses, although these structures only ever exemplify a particular
way of combining lexical items. In figure 20]I present a lexical graph, which
describes all the combinatory possibilities of the lexicon in table [[4 The
original, word based analysis of the same sentences is given in figure [I9]
Comparing the two figures, one sees that there are fewer nodes in the graph
for the original analysis (four versus seven) — decomposition has created three
additional abstract categories y, z, and V. One also sees that each morpho-
logical form of the word eat corresponds to an edge in the original analysis,
whereas there is a single edge for eat in the decomposed analysis (along
with a similar pattern for the auxiliaries have and be). This is the basis of
the claim that the original analysis requires four lexical entries for a single
intransitive verb, whereas the decomposed one just one.

Reading this flowchart from left to right, we can see that it expresses the
generalizations that:

1. (present) tense and modals (will) are first, and in complementary
distribution

2. Next, perfective have may appear, if it does, then whatever is next will
be in the perfective form

38

eat

eaten

has perf

have been
‘/ \

‘w v D be prog ‘M_
18

S <

\ cats

Figure 19: Depicting relations between lexical items for the English auxiliary
system, before decomposition

3. Next, progressive be may appear, if it does then whatever is next will
be in the progressive form

The flowchart notation will be used frequently in this paper, and so I will
explain how to interpret it in some detail. The flowchart is a graph, where
the nodes (shown as boxes) represent grammatical categories, and the edges
(directed arrows) represent lexical items. Formally, an edge w exists from
node u to node v just in case the first feature of the lexical item represented
by w is u™, and the first negative feature of this lexical item is V*B There
is an edge will from node v to node s in the above graph because the lexical
item will :: v k".s™ has as its first feature v and its first negative feature
iss™.

The analysis represented in figure 20| was arrived at in a quasi-mechanical
way, by decomposing lexical items in order to try to eliminate redundancies
in the lexicon. However, the analysis is only for a fragment of English (even
of the English auxiliary system), and we will try to extend it in a similarly
mechanical way. The lexical items which form complex heads (those whose

21This sort of graph just encodes head-complement relationships, and thus represents
just a portion of the information contained in a lexicon. This suffices for our present
purposes, as we are here primarily investigating the clausal spine. In general, a lexical
graph is a directed hypergraph, where nodes correspond to feature types, and where each
lexical item is represented as a hyperedge, whose sequence of source nodes are the positive
features in its bundle, and whose sequence of target nodes are the negative features in its
bundle.

39

first feature is of the form x* for some z) are represented by means of dotted
edges in the figure.

Figure 20: Depicting relations between lexical items for the English auxiliary
system, after decomposition

Before we continue, I will modify our lexicon so as to collapse the dis-
tinction between the categories v and y by renaming them both to y. This
will make the lexical item represented as an arrow from ¥ to v a silent loop,
which we will want to eliminate. This lexical item was introduced when
decomposing the forms of the word have, but has outlived its usefulness. I
will then, now that v is unused, change the category named V to v.

Figure 21: Streamlining our analysis

2.2.1 Tense and modals

We have in our fragment only a single tense, the present, and a single modal,
will. We would like to extend our fragment so as to deal with more sen-
tences, such as the below.

9. John ate
10. John would eat
11. John would have eaten
12. John must have been eating

13. John must be eating

40

Past :: yt.kt.s™ would :: y"t.kT.s™ must :: y"kt.s™

eat ® x¥ @ y* @ Past = ate

Table 16: New lexical items and equations

14. John must eat

As before, we can analyze these sentences as being composed out of whole
words (given the obvious dependency structures), and decompose them to
identify regularites. To save time, I will simply report the results of this
process in table [I6]

These lexical items all fall into familiar position classes; namely Past is
parallel to Pres, and would and must are parallel to will in the sense that they
have the same feature bundles (and thus the same distribution). We can see
this by looking at the flowchart for our lexicon.

will

Figure 22: Modals vs Tense

There is one major locus of redundancy in the grammar: all of these
tense and modal elements share a feature sequence: k™.s™. Accordingly, we
extract a shared functional head AgrS :: tT.kT.s™ from our tense/modal
elements, as shown excerpted below in figure[I7] In this table is an unfamiliar

Table 17: (Part of) the lexicon after severing the subject position from in-
flection

AgrS :: tTkts™ will i yTtT
Pres :: y*.t~

will & AgrS = will Pres — Pres & AgrS

notation: Pres — Pres@® AgrS. This is to be understood as saying that in all

41

of the morphological equations in our grammar, we replace the present tense
Pres (the left hand side) with the present tense Pres plus the head hosting the
subject position. Of course, we need other equations for the other modals,
and another substitution for the past tense Past, which are not shown here.

This gives rise to a lexicon displayed in the flowchart below in figure
In this lexicon, each one of the eight tense and modal elements have one
fewer features, and in exchange we have added a new lexical item with three
features, making for a net decrease of five features.

will

Figure 23: Severing the subject position from inflection

There are no longer any featural redundancies in our lexicon, but we can
reduce the number of lexical entries if we view pairs like will and would as
being inflected forms of a single lexemeﬂ We can decompose the tenses out
from those lexical items, as well as from our current tense lexical items, and
obtain the lexical items below.

Table 18: Some lexical items after decomposing modals and tense

Past :: m"T.t™ mY ::yT.m
oo

Past — mY @ Past will ® Past = would

The lexicon we arrive at is easier to make sense of as a flowchart, which

is displayed in figure [24]

228ome modals, like must, doesn’t appear to have a 'tense’ distinction. Instead of listing
this fact in the morphology (must @ Pres = must and must @ Past = must) I have opted
for making must ’skip over’ the tense head.

42

Figure 24: Decomposing modals and tense

2.2.2 Negation and do

The English affixal negation n’t has been argued to be an inflectional affix
rather than a cliticized form of the negative word not |[Zwicky and Pullum)|
1983|. I adopt this analysis here. We begin again with a set of sentences we
would like to extend our grammar developed thus far to account for.

15. John won’t have been eating
16. John hasn’t eaten

17. John isn’t eating

18. John mustn’t eat

Beginning once again with a whole word analysis, we can successively de-
compose the novel forms (won't, hasn't, isn't, and mustn’t) until we obtain
the negative head nt, and the new category pol.

Table 19: The polarity lexical items
nt ::t.pol” pol :: tT.pol~
will @ Pres @ nt = won/t have ® mY & Pres @ nt = hasn't

The flowchart for the resulting lexicon is displayed in figure 25 I have
truncated everything to the right of the category y, so as to focus on the
area of interest (the 'IP’ domain).

Sentence [15] shows us that nt must be introduced above have and be.
Sentence [L8] shows us that nt must not interact with the category m. The
options then for the placement of nt are restricted to the categories y, ¢ and
s. We have chosen the second option, that of splitting ¢ into two categories,
t and pol, with nt connecting the two. Choosing the first option, of splitting

43

Past_ | m will
AgrS nt ‘l;res :m\
S (&->-- pol @€-=-4 t rres - SSY_y
‘po_!t g must

Figure 25: Introducing negation

what is currently ¥ in to y and pol would be formally possible, but as a
consequence we would need to abandon the generalization that the 'head’ of
the morphological word is introduced syntactically low; then n't would be
the first head making up the word won’t, and thus will would need to be
reanalyzed as an affix. This is well within the realm of analytical possibilities,
but departs wildly from linguistic dogma. The third option, of splitting the
category s into s and pol would require us to make the negation lexical item
weak - it could not support spellout of the morphological word it is part of.
This is because the subject position is introduced by the empty head leading
in to the category s, and subjects are pronounced to the left of negative word
forms in our data. Thus far, we have not had to worry about the strength
of our lexical items; we have simply assumed them all to be strong@ Our
choice of the second option (above tense, but below the subject position) is
in line with much syntactic work, which places negation high in the clause
between the surface subject position (in AgrSP) and tense [Pollock] [1989].

This analysis predicts the syntactic existence of forms like eatsn’t and
aten’t, which of course do not exist. These unattested forms are predicted
by our analysis because negation combines with tense, irrespective of what
may have come before. This is a standard problem, and a standard move in
transformational grammar is to impose a filter that blocks those structures
in which the verb has combined with affixal negation. One way to do this is
to prohibit the verb from raising through negation, i.e. by banning formation
of a complex head containing both negation and a main verb. Auxiliaries
and modals are exempt from such a filter. This will be expanded in section
223

Instead of using affixal negation on main verbs, English makes use of the
periphrastic alternatives below.

Z3This is far from a knock down argument. In fact, most people seem to want lexical
verbs to be pronounced rather low in the structure, which would require the following
strength settings on our lexical items (speaking in the language of figure : the empty
lexical items between v and x, between = and y, and between y and m must be weak, as
too must the tense morphemes. Then the polarity morphemes that we have introduced
should also be weak (whether they are placed at t or at s).

44

19. John doesn’t eat
20. John didn’t eat
Again we begin with a whole-word analysis (the details of which are again

suppressed), and end up with the additional lexical item in table . Lexical

Table 20: lexical do

do::vhtm
do has been assigned the feature bundle v™.m™ because it
1. combines only with an uninflected lexical verb (v™)

2. is compatible with tense (m™) but not with modals, or auxiliaries

The flowchart for our expanded lexicon is given in figure I have here
truncated everything to the left of ¢, thus focussing attention on the verbal
domain.

Figure 26: Introducing do

In order to better describe do-support in the next section, it will be useful
to expand our grammar fragment to cover more constructions in which do
occurs, such as verum focus (sentence sentences and subject-auxiliary
inversion contexts (sentence [22)) without auxiliaries or modals@

21. John DIDN’T eat.

22. Did John eat?

24 Do also appears in VP-ellipsis contexts and negative imperatives. We will not discuss
ellipsis in this chapter (see Kobele|[2015] for an attempt at an elegant yet computationally
tractable take on mainstream generative approaches thereto). I assume the appearance
of do in negative imperatives will yield to whatever account suffices for its appearance in
negative sentences more generally.

45

s [R5 foc le-FC pol <« ot

t
 Pol'_]

Figure 27: Adding verum focus

To deal with verum focus (as in , we begin again with whole word
analyses of the sentences in question, obtaining focussed auxiliaries like
MUST :: yt.kt.s™ and DIDN'T :: vT.k"T.s™. We ’know’ (given our in-
tuitions and analysis to date) that inside MUST we should find must, pol',
and AgrS, and that inside DIDN'T we should find do, Past, nt, and AgrS,
alongside a new Foc head. Because in our analysis must excludes tense, this
Foc head must itself be above tense, meaning that in order to unify the Foc
heads of MUST and DIDN'T we must extract them from these words prior
to decomposing tense from DIDN'T. Nothing forces an ordering of decom-
position steps between Foc and AgrS or the polarity heads, however. If we
decompose Foc first from MUST and DIDN'T, then it will be in a position
higher than the head hosting the subject position (AgrS), and thus must be
weak (on pain of having the inflected unit precede the subject). Decompos-
ing Foc after decomposing AgrS means that the strengh of Foc is irrelevant.
I will simply decide to decompose Foc immediately after AgrS, resulting in

the lexical item Foc :: pol™.foc™. Alongside the semantically contentful

Foc head, we also need a type changing head focPe! implementing the order-

ing statement pol < foc, allowing for sentences without verum focus. This is
shown in figure 27]

The reasoning behind subject auxiliary inversion is quite parallel to the
above. Except that in this case we want the inflected item to precede the
subject, and so must decompose a SAI head (which I will call SAI) above
AgrS. Renaming categories, we obtain the lexical item SAI :: s*.c™ (and
so we have renamed the category s to ¢, and the new category created by
decomposing SAIl is now called s7). Again, we must also introduce the
type changing changing head ¢® implementing the ordering statement s < c,
allowing for sentences without subject auxiliary inversion. This head however

must be weak. This is shown in figure

q 4—51%1—— s RS foc la-FoC pol la-TC_4 't

S t
I e 10CT_ A v Pol'_ |

Figure 28: Adding subject auxiliary inversion

Our final analysis for the English auxiliary system can be viewed as the

46

flowchart in figure [29] This flowchart corresponds to the lexicon in table 21}

PR VI ¥ I B S e
@ _ focpol_] polt_

as wi
e x
os N T -——

Figure 29: The English auxiliary system

which assigns strength to lexical items in such a manner as to realize verbs
low in the structure, or to the variant of this lexicon where all heads are
uniformly strong. The lexical items in the table have been made weak by
default. This makes every lexeme be realized in its base position, unless of
course the subject-auxiliary inversion head is present. There is no strength
setting on heads in this analysis that will make auxiliaries be pronounced
uniformly in T, and lexical verbs in V. If we adapt the proposal of [Arregi
and Pietraszko| [to appear|, and use in addition to weak the strengh value
sticky, then if all lexical items are strong, except for lexical verbs, which
are sticky, and the non-SAI head c®, which is weak, then lexical verbs will
always be pronounced in their base positions, whereas auxiliaries, modals
and do will be pronounced in their highest positions.

Table 21: Lexical items for the English auxiliary system

SAl :: sT.c™ nt : t*.pol~ do:vfm~ have: perft.y~
c:stc pol* : tT.pol™ will : yt.m™ Perf : x*.perf™
AgrS : foct.kt.s™ Past:m'.t™ mY : y".m~ be : progt.x~
Foc : pol™.foc™ Pres : m* .t~ y<:xty~ Prog: v'.prog”
focP® : polt.foc™ must:yttT x¥:vix~ eat:dtv

2.2.3 Do-support

The decompositional methodology relies not just on decomposing lexical
items, but also on unifying lexical items that seem like they are copies of each
other. For example, when decomposing eats into the root eat and a tense
head Pres, and is into the root be and a tense head Pres, I made a decision
to treat both tense heads as the same. This decision was not discussed much,
but it was very consequential. Although decomposition itself does not change
the language generated by a lexicon, unifying categories (or lexical items)
can. In particular, is has a different distribution in the language than eats
- it may be inverted with respect to the subject (as in questions) and it

47

may appear before negation. By unifying the tensed Pres of is with the
tensed Pres of eats, we are giving both forms the same derivational future.
Similarly, by treating the Pres of does as the same as the Pres of eats and
is, we give them again the same derivational future. Once we have made
this step, there is no syntactic route back, and so we need to appeal to some
other mechanism to rein in our self-inflicted overgeneration.

Table 22: A characterization of do-support
if do then nt or Foc or SAI

if lexV then not (nt or Foc or SAI)

Carefully examining our overgeneration in light of our theory, we observe
a complementarity, summarized in table[22] The unusual descriptions in the
table are intended to be predicates of paths through the flowchart in figure
29} for any lexical item ¢, the atomic predicate £ holds of a path just in case
that path contains that lexical item (i.e. just in case that path goes along
an edge representing that lexical item). The variable lexV is a meta-variable
over lexical verbs (which in our current lexicon are just the solitary eat).
The paths that overgenerate are those which do not satisfy either predicate.
The complimentarity of distribution between lexical verbs and do is explicit
in these predicates, with the consequents being negations of one another.
These predicates state on the one hand that if do is used, then at least one
of nt, Foc, or SAl must also be used. Therefore, do must be blocked if none of
those heads appear. This can be implemented by the morphology refusing to
interpret the following sequences of heads: do®7ns® pol* @ focP® DAgrSdc®
(here, Tns is a metavariable over the tense heads Pres and Past). On the
other, if a lexical verb appears, then the opposite must obtain: neither nt,
nor Foc, nor SAl may be used. Therefore, a lexical verb must be blocked if
any of these heads appear. Formulating this as a filter (a ban on illicit paths)
requires three independent statements, banning lexical verbs appearing with
negation: finiteVerb & nt, or with verum focus: finiteVerb & pol* & Foc, or
with subject auxiliary inversion: finiteVerb @ pol® & focP® & AgrS @ SAI. Here,
finiteVerb is an abbreviation for lexV & x¥ & y* & mY & Tns.

Of course, the complementarity of distribution between do and lexical
verbs seems like an accident if our account is in terms of morphological (or
derivational) filters. Rephrasing this objection in terms of the present paper:
having two independent statements when one would do results in a gram-
matical description which is redundant (i.e. larger than necessary). This

48

however is not one that our current redundancy elimination techniques (of
decomposition and unification) can deal with, and so we must rely on brute
ingenuity. A popular strategy is to treat (auxiliary) do not as a lexical item,
but as the morphological realization of an otherwise illegitimate complex
head. Then, if illegitimate complex heads only arise when lexical verbs ap-
pear with negation, verum focus, or SAI, then we have an elegant explanation
for the complementarity of distribution between do and lexical verbs. This
idea can be implemented straightforwardly, but we need to be careful. We
cannot simply pronounce an illegitimate complex head (containing a lexical
verb!) as a form of do, because the lexical verb does appear after all (though
uninflected) in sentences with do-support. Instead we must change our per-
spective on complex head formation - having your category feature checked
by an underlined feature is still necessary to being a complex word, but can
no longer be sufficient. We can stipulate that the heads nt, Foc, and SAl, if
they enter in to a relationship with a sequence of heads containing a lexical
verb, forcibly detach the lexical verb from the complex word sequence. This
is more related to our filtering strategy than it might at first appear. We in
effect continue to have the (now necessarily) morphological filters on finite
verbs described above, but now instead of simply refusing to interpret them,
we have introduced a repair operation which breaks up an uninterpretable
complex head like lex V@ x¥ ®y*®mY & T'ns @ nt into two interpretable ones:
lexV and do @ T'ns @ nt. Note that I have not only broken off the lexV from
this complex head, but I have also replaced the subsequence x¥ @& y* @& mY
with do. By placing the repair operation at the interface, the morphology
receives only inputs that it can interpret normally.

It is possible to think of this as an instance of periphrastic exponence
[Blevins|, where the syntax passes an input (in this case an uninterpretable
head like eat ®x¥ @ y* & mY @ Pres @ nt) to the interface, and receives multiple
words (doesn’t and eat) to linearize.

2.3 Grammatical function changing operations

Previously we attempted to provide an analysis of the English auxiliary sys-
tem on methodological first principles. Instead of appealing to theoretical
desiderata, such as having a fixed set of functional projections, in a certain
order, etc, we began with whole words, and tried systematically to reduce
redundancy in our analysis by means of our operation of lexical decompo-
sition. Lexical decomposition is an operation on lexical items which splits
one lexical item into two, by dividing its feature bundle into two parts, and
giving one part to one, and the other part to the other. We saw that lexical

49

decomposition can sometimes end up decreasing the size of our lexicon, both
in terms of the raw number of lexical items used (because parts of lexical
items can be reused) but also in terms of the total number of features used.

In this section we will continue with this methodology, looking at more
constructions, specifically, adding passivization (and consequently transitive
verbs) and raising (both object and subject) to the mix.

2.3.1 Raising to subject

Our analysis thus far does not generate sentences like the below.
24. John will seem to laugh.
25. Mary seemed to have been crying.

I assume the dependencies between whole words shown in figure [30]

278, N N O\

John will seem to laugh

~_

Figure 30: Dependencies for sentence 'John will seem to laugh

In other words, there is a (selectional) dependency between the embedded
verb and the subject, but none between the (uninflected) verb seem and the
subject.

In lieu of explicitly decomposing and unifying, I will discuss the process
at a high level. The word to in our corpus has the same range of selectional
possibilities as does must; it may combine with bare verbs, with have, or
with be. It does not combine with will or must. Thus, it must select
something of category y. In turn, it itself is not selected by will (and so
cannot result in something of category y), nor does it inflect (and so cannot
result in something of category m), nor can it be affixally negated (and so
cannot result in something of category t), focussed (of category pol), nor can
it host a subject (and thus cannot be of category foc). For the time being,
we will assign it a new category name, ¢, and allow seem to select something
of this category. We arrive at the following new lexical entries.

Our lexicon can be visualized as per the flowchart in figure

One interesting aspect of our new lexicon is that the resulting language
is infinite! This can be seen by inspecting the flowchart, which now contains

50

Table 23: Lexical entries seem and to

to::yt.i~

seem :: itT.v

Figure 31: Our grammar after raising to subject

a cycle; we can go from v to y, and then from y back to v (via lexical items
to and seem).
2.3.2 Raising to object
We now consider the following sentences.
25. John will expect Mary to laugh.
26. Mary believes John to have been crying.

I assume the dependencies between whole words as shown in figure [32]

o~ N

John will expect Mary to laugh

_/W

Figure 32: Dependencies for sentence

In other words, there is a (selectional) dependency between the embed-
ded verb and the object, as well as one (a case assignment dependency)
between the matrix verb expect and this object. There is also a (selectional)
dependency between the matrix verb and the matrix subject.

Based on these dependencies, we assign the feature bundle iT.k*.Td.v™
to the lexical item expect, allowing it to

1. select a non-finite clause (i™)

2. check the case of something in this clause (k™)

51

3. select its subject (td)
4. project a vP (v7)

Scouring our lexicon, we see that our other (intransitive) verbs contain a
similar feature bundle suffix: Td.v~. We can decompose our verbs, abstract-
ing out this suffix as a new lexical item: v :: V©.7d.v™. We can think of
this lexical item as akin to the syntactician’s argument introducing ’little-v’
head. If object case checking is overt, it is crucial that this new lexical item
is strong, as the raising to object verb expect appears before the object, yet
the object moves to the specifier of expect when its case is checked. Hav-
ing this 'little-v’ head be strong allows expect to head-move to a higher (i.e.
lefter) position than the object which moved to its speciﬁerﬁ Our lexical
verb lexical items now have the following form:

Table 24: Verbal lexical items

laugh :: V' expect :: it k".V= v :: VF.tdv™

Our lexicon can be visualized as per the following flowchart.

Figure 33: Our grammar after raising to object

Z5Note that if object case checking is covert, then we cannot account for the word order in
sentences with auxiliaries! The raised-to-object subject would surface in its base position
adjacent to the lower (!) verb, giving rise to ungrammatical sentences like “John expects to
have laughed Mary.” Our initial dependency structure represented a derivation which did
not give rise to the correct word order! This illustrates an alternative perspective on the
methodology of this paper; instead of merely reducing redundancy, lexical decomposition
can be viewed as an repair operation on analyses. We can begin with a whole word analysis
capturing the postulated dependencies, without worrying about whether it allows for the
correct word order, and then lexical decomposition can be used to obtain an analysis which
does.

92

2.3.3 Passivization

Raising to object verbs become raising to subject verbs when passivized.
27. Mary is expected to laugh
28. John has been being expected to have been crying

I assume the dependencies between whole words as shown in figure [34]

IV S GNPV
Mary is expected to laugh

~

Figure 34: Dependencies for sentence 'Mary is expected to laugh’

Based on these dependencies, we initially assign the feature bundle i*.pass™
to the lexical item expected. We do not want to assign it the same category as
seem, because, unlike seem, expected obligatorily combines with a form of be.
This be is different from our previous be, as it does not govern the progressive.
We assign it the feature bundle pass™.v~. We have expect already in our
lexicon, with features i™.k™.V~. In order to relate our extant expect and new
expected, we can decompose out a common core, expect :: iT.V;~, and are
then left with two 'residues’: a new ’passive’ lexical item Pass :: V; " .pass™
and a new ’active’ lexical item Act :: V;/.kT.V™.

Our lexicon can be visualized as per the following flowchart.

Figure 35: Our grammar after encountering passive raising to object verbs

With this new lexicon, we can immediately analyse transitive verbs (both
active and passive):

93

29. John praised Mary.
30. Mary will have been criticizing John.

We proceed from the following dependencies.

VY
John praised Mary

N N P

Figure 36: Dependencies for sentence

Based on these dependencies, we assign the feature bundle d*™.k™.d+".kT.s~
to praised. Decomposing out pieces that already exist in our lexicon, we are
left with a single new lexical item praise :: d™.V; ™.

3 Conclusion

Minimalist grammars are, I believe, a good formalisation of the program of
Minimalism. Instead of trying to dazzle you with the ease with which we can
formalize a variety of alternative proposals for mechanisms, ways of feature
checking, and so on, I have opted for a more in depth, and hands on approach.
My goal was not to convince you that the analysis we arrived at was correct,
only that the means of arriving at it are systematic, and straightforward.
Even if the grammatical metatheory adopted here is not yours, I believe
that the idea of lexical decomposition is generalizable across instantiations
of Minimalism, and that decomposition clarifies the nature of functional
projections in Minimalism. They are not only justifiable based on capturing
lexical generalizations, but provide Minimalism’s version of type hierarchies.
Instead of using individual parse trees to work through the analysis, I opted
for the more holistic lexical flowcharts. (The dependency structures are of
course equivalent to parse trees for simple whole-word analyses.) This places
more of a burden on the reader interested in reconstructing individual parse
trees, but I believe that the analyses themselves are familiar enough so that
not much is lost. Instead, we can focus on the evolution of the connections
between lexical items, which provides a more global perspective from which
to understand the development of an analysis.

o4

References

K. Abels. Move? ms. University of Connecticut, Storrs, 2001.

K. Arregi and A. Pietraszko. The ups and downs of head displacement.
Linguistic Inquiry, to appear.

A. Assmann, D. Georgi, F. Heck, G. Miiller, and P. Weisser. Ergatives move
too early: on an instance of opacity in syntax. Syntaz, 18:343-387, 2015.

D. Béchet and A. Dikovsky, editors. Logical Aspects of Computational Lin-
guistics, volume 7351 of Lecture Notes in Computer Science, Berlin, 2012.
Springer.

R. Bernardi and A. Szabolcsi. Optionality, scope and licensing: An appli-
cation of partially ordered categories. Journal of Logic, Language and
Information, 17:237-283, 2008.

J. P. Blevins. Periphrasis as syntactic exponence. ms.

M. Brody. Mirror theory: Syntactic representation in perfect syntax. Lin-
guistic Inquiry, 31(1):29-56, 2000.

N. Chomsky. Syntactic Structures. Mouton, The Hague, 1957.

N. Chomsky. Aspects of the Theory of Syntar. MIT Press, Cambridge,
Massachusetts, 1965.

N. Chomsky. On formalization and formal linguistics. Natural Language and
Linguistic Theory, 8(1):143-147, 1990.

N. Chomsky. A minimalist program for linguistic theory. In K. Hale and
S. J. Keyser, editors, The View from Building 20. MIT Press, Cambridge,
Massachusetts, 1993.

N. Chomsky. The Minimalist Program. MIT Press, Cambridge, Mas-
sachusetts, 1995.

N. Chomsky. Minimalist inquiries: The framework. In R. Martin,
D. Michaels, and J. Uriagereka, editors, Step by Step: Essays on Min-
imalist Syntax in Honor of Howard Lasnik, pages 89-155. MIT Press,
Cambridge, Massachusetts, 2000.

95

N. Chomsky. Beyond explanatory adequacy. In A. Belletti, editor, Structures
and Beyond: The Cartography of Syntactic Structures, volume 3 of Oxford
Studies in Comparative Syntax, chapter 3. Oxford University Press, 2004.

N. Chomsky. Problems of projection. Lingua, 130:33-49, 2013.

B. Citko. On the nature of merge: External merge, internal merge, and
parallel merge. Linguistic Inquiry, 36(4):475-496, 2005.

C. Collins. Eliminating labels. In S. D. Epstein and T. D. Seely, edi-
tors, Derivation and Explanation in the Minimalist Program, pages 42—64.
Blackwell, Oxford, 2002.

M. Ermolaeva. Induction of minimalist grammars over morphemes. In A. Et-
tinger, G. Jarosz, and M. Nelson, editors, Proceedings of the Society for
Computation in Linguistics, volume 3, pages 484-487. SCiL, 2020.

D. Flickinger. Lezical Rules in the Hierarchical Lexicon. PhD thesis, Stan-
ford, 1987.

H.-M. Gértner. Generalized Transformations and Beyond: Reflections on
Minimalist Syntaz. Akademie Verlag, Berlin, 2002.

T. Graf. Closure properties of minimalist derivation tree languages. In
S. Pogodalla and J.-P. Prost, editors, LACL 2011, volume 6736 of Lecture
Notes in Artificial Intelligence, pages 96-111, 2011.

T. Graf. Movement-generalized Minimalist grammars. In |[Béchet and
Dikovsky! [2012], pages 58-73.

T. Graf. A computational guide to the dichotomy of features and constraints.
Glossa, 2:1-36, 2017.

I. Heim and A. Kratzer. Semantics in Generative Grammar. Blackwell
Publishers, 1998.

R. Hudson. An Introduction to Word Grammar, volume 60 of Cambridge
Textbooks in Linguistics. Cambridge University Press, 2010.

R. Jackendoff. Morphological and semantic regularities in the lexicon. Lan-
guage, 51(3):639-671, 1975.

G. M. Kobele. Generating Copies: An investigation into structural identity in
language and grammar. PhD thesis, University of California, Los Angeles,
2006.

56

G. M. Kobele. Minimalist tree languages are closed under intersection with
recognizable tree languages. In S. Pogodalla and J.-P. Prost, editors, LACL
2011, volume 6736 of Lecture Notes in Artificial Intelligence, pages 129—
144, 2011.

G. M. Kobele. Importing montagovian dynamics into minimalism. In|Béchet
and Dikovsky| [2012], pages 103-118.

G. M. Kobele. Meeting the boojum. Theoretical Linguistics, 40(1-2):165-173,
2014.

G. M. Kobele. LF-copying without LF. Lingua, 166, part B:236-259, 2015.

H. Koopman. Recursion restrictions: Where grammars count. In T. Roeper
and M. Speas, editors, Recursion: Complezity in Cognition, volume 43 of
Studies in Theoretical Psycholinguistics, chapter 2, pages 17-38. Springer,
2014.

M. Kracht. Syntax in chains. Linguistics and Philosophy, 24(4):467-529,
2001.

H. Lasnik. Verbal morphology: Syntactic Structures meets the minimalist
program. In P. Kempchinsky and H. Campos, editors, Fvolution and Revo-
lution in Linguistic Theory: Essays in Honor of Carlos Otero. Georgetown
University Press, Georgetown, 1995.

J. L. Lee. Automatic morphological alignment and clustering. Technical Re-
port TR-2014-07, Department of Computer Science, University of Chicago,
May 2014.

W. D. Meurers. On expressing lexical generalizations in HPSG. Nordic
Journal of Linguistics, 24(2):161-217, 2001.

J. Nunes. Sideward movement. Linguistic Inquiry, 32(2):303-344, 2001.

T. Osborne, M. Putnam, and T. Grof. Bare phrase structure, label-less trees,
and specifier-less syntax. is Minimalism becoming a dependency grammar?
The Linguistic Review, 28:315-364, 2011.

C. J. Pollard and I. A. Sag. Head-Driven Phrase Structure Grammar. Uni-
versity of Chicago Press, 1994.

J.-Y. Pollock. Verb-movement, universal grammar, and the structure of IP.
Linguistic Inquiry, 20(3):365-424, 1989.

o7

E. Shima. A Preference for Move over Merge. Linguistic Inquiry, 31(2):
375-385, 2000.

E. P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects
of Computational Linguistics, volume 1328 of Lecture Notes in Computer
Science, pages 68-95. Springer-Verlag, Berlin, 1997.

E. P. Stabler. Remnant movement and complexity. In G. Bouma, E. Hinrichs,
G.-J. M. Kruijff, and R. Oechrle, editors, Constraints and Resources in
Natural Language Syntaz and Semantics, chapter 16, pages 299-326. CSLI
Publications, 1999.

E. P. Stabler. Computational perspectives on minimalism. In C. Boeckx, ed-
itor, The Ozford Handbook of Linguistic Minimalism, Oxford Handbooks
in Linguistics, chapter 27, pages 616-641. Oxford University Press, New
York, 2011.

P. Svenonius. Spans and words. In D. Siddiqi and H. Harley, editors, Mor-
phological Metatheory, volume 229 of Linguistics Today, pages 201-222.
Johns Benjamins, Amsterdam, 2016.

H. van Riemsdijk. Grafts follow from merge. In M. Frascarelli, editor, Phases
of Interpretation, volume 91 of Studies in Generative Grammar, pages 17—
44. Mouton de Gruyter, 2006.

C. Wilder and H.-M. Gértner. Introduction. In C. Wilder, H.-M. Gértner,
and M. Bierwisch, editors, The role of economy principles in Linguistic
Theory, pages 1-35. Akademie Verlag, Berlin, 1997.

E. Williams. Representation Theory. MIT Press, Cambridge, Massachusetts,
2003.

A. M. Zwicky and G. K. Pullum. Cliticization vs. inflection: English N'T.
Language, 59(3):502-503, 1983.

o8

	Formal foundations of Minimalist syntax
	Features and Feature Bundles
	Feature Checking
	Structure Building
	Dependency structures
	Mirror theory
	Bare phrase structure

	Interfaces: Linearization
	Ordering
	Chains
	Informational equivalence

	Decomposition as a discovery procedure
	Investigating English auxiliaries
	Decomposition of Feature Bundles
	Decomposition and Generalization
	Complex heads
	Decomposing Auxiliaries

	More on English auxiliaries
	Tense and modals
	Negation and do
	Do-support

	Grammatical function changing operations
	Raising to subject
	Raising to object
	Passivization

	Conclusion

